logo

décomposition en éléments simples


masterdécomposition en éléments simples

#msg3230541#msg3230541 Posté le 20-10-10 à 22:36
Posté par Profildamo damo

Bonsoir, le genre de trucs qui part vite et on perd la main à force de plus faire ::

Je cherche comment bien faire la décomposition en éléments simples de 1/X^3*(X+1).


je sais que c'est égal à 1/X^3-1/X²+1/X-1/X+1

Merci
re : décomposition en éléments simples#msg3230583#msg3230583 Posté le 20-10-10 à 22:47
Posté par Profilcarpediem carpediem

salut

1/[x3(x+1)] = (Ax2+BX+C)/xx3+d/(x+1)=a/x3+b/x2+c/x+d(x+1).....
Publicité

re : décomposition en éléments simples#msg3230596#msg3230596 Posté le 20-10-10 à 22:52
Posté par Profiljacqlouis jacqlouis

    Bonsoir ,D...   Sachant que cette décomposition peut se faire comme tu l'indiques, tu peux écrire:
    
    1 / x^3(x+1)  =  a/x^3 + b/x^2 + c/x + d /(x+1)
                  = [ a*(x+1) +b*x*(x+1) + c*x²*(x+1) + d*x^3 ]/ [(x+1)*x^3[
Tu développes le second membre, puis tu identifies les 2 numérateurs .

    Ce qui te donnera :  a = 1  :  b = -1 ; c = 1 ;  d = -1 .
re : décomposition en éléments simples#msg3230902#msg3230902 Posté le 21-10-10 à 12:18
Posté par Profilkybjm kybjm

Si F = 1/P où P = X3(X + 1) on sait que F est de la forme a/X3 + b/X² * c/X + d/(X + 1) où a,b,c,d sont des réels .
On obtient facilement : a = 1 et d = -1 (on multiplie des 2 côtés par ... et on fait X = ...)

Une astuce qui peut servir : On remplace X par j = exp(2/3) et on obtient : -j = 1 + bj + cj² + j donc 1 - c + (b + 2 - c)j = 0 et on se sert du fait que {1 , j}  est libre dans considéré comme -ev pour en déduire c = 1 et b + 2 - c = 0 donc b = -1 .
re : décomposition en éléments simples#msg3232423#msg3232423 Posté le 22-10-10 à 11:08
Posté par Profildamo damo

Merci beaucoup
re : décomposition en éléments simples#msg3232857#msg3232857 Posté le 22-10-10 à 17:40
Posté par Profilcarpediem carpediem

de rien

j'aurais calculer a et d en multipliant par x3 et x+1 respectivement et en faisant x=0 et x=1 resp. mais plutôt que de passer par les complexes j'aurais tout simplement pris x=-2 et x=1 pour déterminer b et c à l'aide d'un système tout simple....

Répondre à ce sujet

réservé Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster
attention Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.

  • Ce topic

    imprimer Imprimer
    réduire la tailleRéduire   /   agrandir la tailleAgrandir

    Pour plus d'options, connection connectez vous !
  • Fiches de maths

    * analyse en post-bac
    16 fiches de mathématiques sur "analyse" en post-bac disponibles.


maths - prof de maths - cours particuliers haut de pagehaut Retrouvez cette page sur ilemaths l'île des mathématiques
© Tom_Pascal & Océane 2014