Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Encadrement des solutions d'une équation f(x)=0

Posté par
Susan
02-11-09 à 16:16

Bonjour, voici un exercice de mon DM de maths. J'airépondu aux questions mais je n suis pas trop ure demoi, surtout pour là 4). J'ai mis des réponses courtes, donc si qqn aurait du temps à me consacrer, pour vérifier mes réponses et éventuellement m'éclairer pour la 4), je l'en remercie.


A) Existence d'ne solution.

On veut résoudre l'équation x^3+x-1,pour cela,on considère la fonction f définie sur R par f(x)=x^3+x-1.
     1)Justifier sans dérivation que f est strictement croissante sur R.
Là, j'ai montré que x^3 était croissante et que x-1 aussi. Donc l'addition de deux fonctions croissantes donne une fonction croissante.
    
     2)Justifier que f est continue sur R.
C'est une fonction polynôme donc elle est continue sur R.

     3) Calculer les limites de f en + et -oo.
En +oo c'est +oo et -oo c'est -oo.

     4)Montrer que x^3+x-1=0 admet une unique solution k sur ]0;1[.
Et là, je suis un peu perdue.Faut-il juste citer le théorème de la bijection ? Dire que f est continue et strictement mootone sur R, donc si 0 appartient à f(R) alors f(x)=0 admet une unique solution sur I?
Sinon je ne vois pas quoi dire.

Posté par
Susan
re : Encadrement des solutions d'une équation f(x)=0 02-11-09 à 16:56

Voilà la suite que je ne comprends absolument pas...

B) Encadrement de la solution par dichotomie.

     1) On se propose d'obtenir un encadrement de largeur p de la solution sur R de l'équation par la méthode de dichotomie. On part d'un encadrement connu [a;b] de la solution k.
Expliquer l'algorithme ci-dessous. En particulier, justifier le test : Si f(c)*f(a)>0 alors ca, sinon cb.

Algorithme :
Entrer a,b,p
Tant que b-a>p
(a+b)/2c
Si f(c)*f(a)>0
Alors ca,
sinon cb
Fin si
Fin tant que
Afficher a, b

     2) a) Dresser le tableau suivant sur EXCEL :

ABCDEFG
1abc=(a+b)/2b-af(a)
2


      b) En A2 et B2 entrer les valeurs de a et b (encadrement connu de k).
Ecrire en C2 et D2 les formules correspondantes en utuilisant les noms des cellules A2 et B2. En E2, écrire l'expression de f(x) en remplaçant x par A2.
On considère ici la fonction de la partie A. Recopier E2 en F2 et G2. Qu'obtient-on dans les cellules F2 et G2 ?
Compléter les cellules F1 et G1 par le texte adéquat décrivant ces deux colonnes.
En A3, écrire la formule correspondante au test suivant : Si f(c)*f(a)> alors écrire c, sinon écrire a. Pour cela utiliser la fonction "SI" et des noms de cellules correspondantes. Ecrire le test correspondant en B3.

Posté par
Susan
re : Encadrement des solutions d'une équation f(x)=0 02-11-09 à 21:43

Gloup's
Personne pour de l'aide ?

Posté par
Bourricot
re : Encadrement des solutions d'une équation f(x)=0 02-11-09 à 21:49

Bonjour,

Pour étudier le sens de variation d'une fonction , tu as, depuis la première, un outil très pratique : la dérivée ...

Alors quelle serait le dérivée de la fonction f ici présente ?

Et puis cette année , tu as dû voir un truc très utile aussi pour résoudre f(x) = 0 , le théorème des valeurs intermédiaires !

Alors regarde ton cours , refait les exos faits en classe et tu vas trouver les réponses à tes premières questions !

Posté par
LeHibou
re : Encadrement des solutions d'une équation f(x)=0 02-11-09 à 21:51

Bonjour,

Pour la 4), montre que la fonction est strictement monotone croissante (étudie le signe de la dérivée), calcule f(0), f(1), conclus à l'existence de la racine entre 0 et 1 avec le théorème des valeurs intermédiaires, et à son unicité à cause de la monotonie stricte

Posté par
Susan
re : Encadrement des solutions d'une équation f(x)=0 03-11-09 à 15:44

Oui c'est ce que je m'étais dit mais s'ils me demandent de pas calculer la dérivée avant, je pense que du coup, il faut que je me débrouille sans la dérivée avec les réponses que j'ai trouvées dans les trois premières questions ( pour la 4 )...
Enfin peut-etre que je me pose trop de questions...
Merci tout de même.

Posté par
LeHibou
re : Encadrement des solutions d'une équation f(x)=0 03-11-09 à 15:55

La dérivée est facile à calculer, c'est 3x²+1, et elle est toujours strictement positive, donc la fonction est strictement monotone croissante... Et tu aurais bien tort de t'en priver, les profs apprécient les élèves capables d'initiative !

Posté par
Susan
re : Encadrement des solutions d'une équation f(x)=0 03-11-09 à 16:22

D'accord alors je vais faire comme ça.
Merci beaucoup.

Posté par
LeHibou
re : Encadrement des solutions d'une équation f(x)=0 03-11-09 à 17:31

C'était un plaisir !

Posté par
Bourricot
re : Encadrement des solutions d'une équation f(x)=0 03-11-09 à 18:19

Oh je n'avais pas tout lu

Citation :
1)Justifier sans dérivation que f est strictement croissante sur R.


Dans ce cas ta réponse :
Citation :
Là, j'ai montré que x^3 était croissante sur IR et que x-1 aussi. Donc l'addition de deux fonctions croissantes donne une fonction croissante.
est la bonne !! Toutes mes excuses pour ce mauvais conseil !

Posté par
LeHibou
re : Encadrement des solutions d'une équation f(x)=0 03-11-09 à 18:32

Bien vu, bravo !

Posté par
Susan
Algorithme 05-11-09 à 20:33

Huhu j'voudrais pas être exigente, mais y'aurait-il qqn pour m'aider pour la partie B?

Posté par
LeHibou
re : Encadrement des solutions d'une équation f(x)=0 05-11-09 à 22:47

C'est une méthode de dichotomie, a ou b varie à chaque étape, et on divise la largeur de l'intervalle entre a et b à chaque étape.
Le test est f(a).f(c) > 0 vérifie que f(a) et f(c) sont du même côté de la racine. Tant qu'ils sont du même côté, on continue à progresser dans le même sens, quand ils ne le sont plus, donc qu'on est passé de l'autre côté de la racine, on progresse dans l'autre sens.
Le test d'arrêt final n'est pas précisé :
Fin si ???
Fin tant que ???

Posté par
LeHibou
re : Encadrement des solutions d'une équation f(x)=0 05-11-09 à 22:48

Précision : et on divise par 2 la largeur de l'intervalle entre a et b à chaque étape

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Mentions légales - Retrouvez cette page sur l'île des mathématiques
© digiSchool 2016

Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1183 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !