Inscription / Connexion Nouveau Sujet
Niveau maths sup
Partager :

Etude d'une somme

Posté par
gclara
01-11-13 à 10:30

Bonjour,cela peut paraître bizarre mais j'ai beaucoup de difficultés avec ce premier exercice de dm!
Je demande donc quelques petits indices pour me débloquer ..

Soit p /{0} L'objectif de l'exercice est d'étudier la limite lorsque n tend vers + de la somme:
Sn= de k=n à np sh(1/k)

1) a)Resoudre l'équation 2sh(x)+1=0 .On désignera par alpha l'unique solution.

b)Soit f la fonction définie sur  par: f(x)=ch(x)² +sh(x). Déterminer une expression simple de f(alpha)

c)Etudier les variations de f et en déduire que , pour tout x réel, f(x)est supérieur ou égal à 0

2) Soit g la fonction définie sur ]-1;1[ par g(x)=exp(sh(x))-x-1. Étudier les variations de g (on pourra,si besoin calculer la dérivée g'' de g)

3)Prouvez l'inégalité:x appartenant à [0;1[, 1+x ≤ exp(sh(x)) ≤ 1/(1-x)

4)En déduire que,pour n ≥ 2, on a:ln((pn+1)/n)≤ Sn ≤ -ln((n-1)/pn)

5)Calculer la limite de Sn en+

Merci de votre aide

Posté par
Camélia Correcteur
re : Etude d'une somme 01-11-13 à 14:51

Bonjour

1)a) Nouvelle variable X=e^x

b) Je te rappelle que ch^2(x)-sh^2(x)=1

Posté par
iciparisonzieme
re : Etude d'une somme 02-11-13 à 08:49

1] a] Résolution de l'équation :

        2sh(x)+1=0 ⟺ ex - e-x +1 = 0 ⟺ (ex)2 + ex - 1 = 0

  On pose X = ex, on résout l'équation  X2 + X - 1 = 0. Cette équation possède deux solutions distinctes (√5 - 1)/2 et (-√5-1)/2 de signes contraires. Seule la solution strictement positive est à retenir :

      2sh(x)+1=0 ⟺ ex = (√5 - 1)/2 ⟺ x = ln [ (√5 - 1)/2 ]

b] Valeur de f(a)

  On sait que que 2sh(a)+1=0 donc sh(a) = -1/2

  Dès lors :

           f(a) = ch2(a) + sh(a) = 1 + sh2(a) + sh(a) = 1 + 1/4 - 1/2 = 3/4

c] Sens de variation de f

    f est dérivable sur IR. Pour tout x réel :

            f ' (x) = 2 sh(x) ch(x) + ch(x) = ch(x) [ 2 sh(x) + 1 ]

   Signe de f '(x) :

       ch(x) est strictement positif donc f '(x) a le même signe que 2 sh(x) + 1

             ∎ On a vu que 2 sh(x) + 1 = 0 ⟺ x = a

             ∎ sh est strictement croissante sur IR, on a donc :

                 2 sh(x) + 1 >0 ⟺ sh(x) > -1/2 ⟺ sh(x) > sh(a) ⟺ x > a

        On en déduit que :

               f '(x) s'annule en a
               f '(x) est strictement positive sur ]a ; + ∞[
               f '(x) est strictement négative sur ]-∞ ; a[

   Il en résulte que f est strictement décroissante sur  ]-∞ ; a]  et strictement croissante sur [a ; + ∞[

  Signe de f(x)

   D'après l'étude des variations de f, f possède un minimum qui vaut : f(a)= 3/4. Ce minimum étant strictement positif, on en déduit que f est une fonction strictement positive sur IR

Voilà pour le début !

Posté par
gclara
re : Etude d'une somme 02-11-13 à 20:13

Tout d'abord merci pour vos réponses , et désolé du retard de ma réponse (soucis d'ordinateur)

donc au début je ne comprenais pas pourquoi on posait X=exp(x)

mais en fait je viens de voir que j'avais le bon raisonnement
jusqu'à exp(x)-exp(-x) -1 =0

mais la je ne comprends pas comment on se retrouve avec un exp(x)² ?

Sinon encore merci à vous 2
je vais reprendre çà et essayer de faire la suite ce soir

Posté par
iciparisonzieme
re : Etude d'une somme 02-11-13 à 23:37

J'ai multiplié les deux membres de l'équation par ex (qui est non nul).

         2sh(x)+1=0 ⟺ ex - e-x +1 = 0 ⟺ ex × ex - e-x × ex +1 × ex = 0 × ex

Puis :

         ex × ex = (ex)2

        e-x × ex = e-x+x = e0 = 1

Posté par
idm
re : Etude d'une somme 03-11-13 à 00:02

heureusement que iciparisonzieme est là !! Que ferez l' sans lui ?? Une chose m'échappe: quel est ton intérêt à résoudre les exercices des internautes ? te rassurer sur le fait que t'es capable de les résoudre ?? Sache que tout le monde s'en fou !! essaye d'être plus subtile et pédagogue dans tes interventions...
if you give a man a fish you feed him for a day, while if you teach him to fish you feed him for life

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1221 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !