Inscription / Connexion Nouveau Sujet
Niveau master
Partager :

exercice d'analyse fonctionnelle

Posté par
julien007
25-10-10 à 16:54

Bonjour à tous, je suis bloqué dans un exercice sur les convergences faibles :

Prouver que les suites ci-dessous convergent faiblement vers 0 dans L²(oméga), mais ne sont pas fortement convergentes à cause d'un problème :

1. d'oscillations (la suite oscille de + en +), où la suite définie sur oméga = ]-pi,pi[ est

   u_n(x) = (pi)^(-1/2) * cos(nx)

2. d'évanescence (la suite s'évanouit, elle se translate de + en + loin), où la suite est définie sur oméga = R par

   u_n(x) = u(x-n) où u est la fonction caractéristique de l'intervalle [0,1]

3. de concentration (la suite se concentre en un point), où la suite est définie sur oméga = ]-1,1[ par

   u_n(x) = n^(1/2) * u(nx) où u est la fonction caractéristique de oméga


Et voici mon raisonnement : u_n conv faibl vers 0 ssi l'intégale sur oméga de u_n(x)*h(x) dx tend vers 0 pour tout h dans L²(oméga).


1. J'effectue une intégration par parties et cela a marché (j'obtiens bien 0)

2. J'aboutis à l'intégrale sur [n,n+1] de h(x) dx et en faisant tendre n vers l'infini, j'obtiens 0 aussi

3. Je coince !


D'avance, je vous remercie de m'aider pour confirmer les 2 premières réponses (si ma méthode est bonne et que je ne trouve pas 0 par hasard) et pour me décoincer dans le 3.


NB  Je ne pense pas qu'il faut prouver que la conv forte n'a pas lieu dans les 3 cas (l'assistant a dit de ne pas le faire)

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 17:36

Bonjour.

Citation :
1. J'effectue une intégration par parties et cela a marché (j'obtiens bien 0)

Pourquoi as-tu le droit d'intégrer par parties ? Pour pouvoir intégrer par parties, il faudrait que le h \in L^2 soit C^1.
Or a priori, ce n'est pas le cas.
Vois-tu comment contourner ce problème ?

Ok pour la question 2 !

Pour la 3, fais un changement de variables.

Même si on ne te le demande pas, tu peux quand même montrer qu'il n'y a pas convergence forte pour t'entrainer.

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 17:41

Bonjour,

mais dans tout l'exercice et donc dans 1. aussi, h est dans L²(oméga) (c'est ce que j'ai écris au début de mon raisonnement) => c'est permis, non ?

merci pour 2.

et pour 3. , on pose t=nx ?

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 17:44

Bah justement, ce que je dis, c'est que ce n'est pas permis !
Pour faire une intégration par parties, il faudrait que h soit C^1 donc dérivable !!
Quel sens donnes-tu à la dérivée de h si elle n'est pas dérivable ...

Pour la 3), essaye au lieu de demander ...

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 17:49

1. ah oui, c'est au sens des distributions, c'est ça ? => emploi de la formule pour la dérivée d'une distribution

3. je vais essayer...

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 17:52

Inutile de passer par les distributions. (on peut y arriver comme ça, mais ça revient au même, et c'est moins élémentaire)

Tu es arrivé à montrer en intégrant par parties que \lim_{n \to \infty} \Bigint_{-\pi}^{+\pi}u_n(t)h(t)dt = 0 lorsque h est de classe C^1.
Est-ce que tu ne vois pas un moyen d'étendre le résultat à tous les h \in L^2 ?

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 18:00

Non, je penses + aux limites de suites de Cauchy qui nous donnent des éléments de L² (j'ai vu que L² est un espace complété de l'espace des fcts de classe C infini et à support compact)

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 18:07

Oui, c'est plus ou moins ça !
Il faut utiliser la densité des fonctions régulières dans L^2. (sans nécessairement parler de complété)

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 18:17

ca a marché et pour le 3. , j'obtiens avec t=nx, n^(-1/2) * intégrale de u(t) dt => on tend bien vers 0 pour n infini

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 18:25

N'oublie pas la fonction test h ! Là, tu viens de vérifier qu'il y a convergence forte dans L^1, ce n'est pas le but de l'énoncé.

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 18:34

oh oui, juste, je l'ai bousillé...

j'ai alors n^(-1/2) * intégrale de u(t)*h(t/n) dt

=> pour n infini, h(t/n) -> h(0) = cste et le tour est joué en revenant à mon raisonnement sans h?

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 19:10

Tu ne peux pas dire que h(\frac{t}{n}) \to h(0), h est une fonction définie presque-partout. Parler de sa valeur en 0 n'a pas de sens !
Néanmoins, on peut conclure autrement.

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 19:16

on majore la valeur absolue de l'intégrale et on est <= à la l'intégrale de la valeur absolue puis un facteur est <= à son suprémum qui est une constante et c'est juste ou je suis à côté ?

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 19:18

Détaille un peu plus, j'ai du mal à suivre ton raisonnement.
Il faut bien passer à la valeur absolue, mais la fin me semble un peu "baclée".

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 19:23

oups pardon

Donc, |intégrale de u(t)*h(t/n) dt| <= intégrale de |u(t)*h(t/n) dt|
                                    <= sup u(t) * intégrale de |h(t/n)|

mais je ne suis pas sûr...

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 19:33

Quand on écris quelque chose, il faut être sur que c'est correct, sinon, c'est qu'on passe à côté. (après, même quand on écris des choses correctes, on n'est pas certain de résoudre un exercice, c'est une autre histoire ...)

N'oublie pas que u n'est pas une fonction quelconque, on peut simplifier grandement les choses.
Il reste aussi à montrer que l'intégrale de h(t/n) tend vers 0.

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 19:36

Mais je pense ne pas avoir compris ce que c'est qu'une fct caractéristique sur oméga

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 19:37

C'est la fonction qui vaut 1 sur Omega, et 0 ailleurs.

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 19:41

mais comment simplifier les choses en sachant cela ? pour l'intégrale avec h(t/n) , je ne vois pas non plus que faire ?

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 19:57

Ben pour simplifier, tu remplaces u par son expression ...
Pour l'intégrale de h, écris proprement les choses, avec le facteur n^{-1/2}, et applique Cauchy-Schwartz par exemple. (n'oublies pas que h est L^2)

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 20:24

et j'en déduis alors qu'on tend bien vers 0 dû à n^(-1/2) qui tend vers 0 et par Cauchy-Schwarz, on a l'intégrale qui est bornée.

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 20:27

Oui, c'est ça.

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 20:29

Et bien merci pour tout, j'en ai appris des choses et c'est ce que je voulais

Merci

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 20:44

De rien, courage pour la suite de tes études.
Tu as choisi un module d'analyse fonctionnelle pour ton parcours ?

Posté par
julien007
re : exercice d'analyse fonctionnelle 25-10-10 à 20:53

en fait, j'ai 60 ECTS par année d'étude et cette année-ci, en 5e polytech, je pouvais choisir des cours à la carte dans la faculté de polytech [et en + un ou plusieurs cours de la faculté de mon choix qui font 6 ECTS au maximum].

A noter que je suis à l'ULB en Belgique.

C'est ainsi que j'ai décidé de prendre des cours de math (puisque c'est ce qui me passionne) mais malheureusement, je suis limité à 6 ECTS max dans la faculté de mon choix (ici des sciences)

=> je suis un cours qui s'appelle analyse fonctionnelle à 5 ECTS.

En 4e polytech, j'ai eu un cours d'analyse fonctionnelle aussi mais les maths en polytech sont moins rigoureuses qu'en "maths purs" => c'est pour ca que par exemple, j'ai vu très brièvement les limsup et liminf par exemple.

Je ne connaissais pas non plus le lemme de Fatou ni le théorème de la convergence dominée de Lebesgue
=> c'est pour cela aussi que j'ai appelé à l'aide

En tout cas, je te remercie pour ta gentillesse et ta patience et bravo pour la réussite de l'exercice

Tu es professeur ?

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 25-10-10 à 20:58

Non, je ne suis pas professeur, seulement un étudiant en Master 2 Maths recherche.

Si tu ne connais pas les énoncés du théorème de Lebesgue et du lemme de Fatou, je t'invite à lire un cours sur l'intégrale de Lebesgue.
Il y a quelques énoncés très importants à connaître en analyse fonctionnelle. (le théorème de Fubini est aussi primordial, plus des résultats sur les espaces L^p)

Posté par
julien007
re : exercice d'analyse fonctionnelle 26-10-10 à 22:51

Merci encore et bonne continuation, tu m'as très bien aidé et c'était très clair et très interactif

Posté par
Arkhnor
re : exercice d'analyse fonctionnelle 26-10-10 à 22:54

Tout le plaisir était pour moi.
Bonne continuation à toi aussi !

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1225 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !