Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Géométrie dans l'espace, Terminale ES (spécialité)

Posté par
lisous
04-01-12 à 14:46

Bonjour, j'ai commencé le début d'un exercice et je souhaiterai avoir un corrigé de ce que j'ai fait. Voici l'énoncé:

L'espace est muni d'un repère orthonormal (O;;;). On considère les points N (0;2;0), O(0;0;6), P(4;0;0), Q(0;4;0) et R (0;0;4) ainsi que le plan (P1) d'équation 3y+z=6.

1) quels sont les points d'intersection du plan (P1) avec les axes du repère ? En déduire les traces du plan (P1) sur les plans de base (faire une figure).

2)a) démontrer que les points P,Q,R déterminent un plan que l'on notera (PQR). Représenter ce plan par ses traces sur le plan de base.
b) vérifier que ce plan a pour équation x+y+z=4

3)a) Justifier que les plans (P1)et (PQR) sont sécants. On note leur intersection
b) Sans justifier, représenter en couleur sur la figure.

Posté par
drmahboool
re : Géométrie dans l'espace, Terminale ES (spécialité) 04-01-12 à 16:51

ils sont ou tes réponses?

Posté par
drmahboool
re : Géométrie dans l'espace, Terminale ES (spécialité) 04-01-12 à 16:51

elles

Posté par
lisous
re : Géométrie dans l'espace, Terminale ES (spécialité) 05-01-12 à 21:52

Alors j'ai trouvé des réponses, mais je ne sais pas si elles sont justes. Je n'arrive pas non plus à justifier.

1.a)On note 3y+z=6 l'équation du plan (P1). Les coordonnées de chacun des 3 points doivent vérifier cette équation.
Point 1 : 0 + 32+0=6 donc le point 1 a pour coordonnées (0;2;0) ce qui correspond au point N.
Point 2:0+0+6=6 donc le point 2 a pour coordonnées (0;0;6) ce qui correspond au point O.
En prenant les coordonnées du point P on trouve 04+30+00=0, c'est donc différent du plan (P1).
De même pour Q où l'on trouve un résultat égal à 12 et pour R où l'on trouve un résultat égal à 4.

Posté par
Priam
re : Géométrie dans l'espace, Terminale ES (spécialité) 06-01-12 à 10:41

Ce n'est pas très clair. Exemple :
1) Equation du plan (P1) : 3y + z = 6.
Equations de l'axe Oj : x = 0  z = 0.
Coordonnées du point d'intersection de (P1) et de cet axe :
x = 0   y = (6 - 0)/3 = 2   z = 0. C'est le point N.

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Mentions légales - Retrouvez cette page sur l'île des mathématiques
© digiSchool 2016

Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1193 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !