Inscription / Connexion Nouveau Sujet
Niveau quatrième
Partager :

Pyramide dans un pavé droit

Posté par
Little_J
28-02-11 à 20:15

Bonjour ! J'ai un DM à rendre pour le 14/03. J'ai très bien compris l'énoncé d'un exercice, j'ai à peut-près aperçu ce que je devais faire mais je n'arrive pas à l'expliquer !
Voici le sujet en question ainsi que mon raisonnement.
Hypothèses :


I, J, K, L, M milieux respectifs de [AB], [BC], [CD], [AD] et [HG].
AB = 8 cm
AD = 6 cm
AE = 5cm
ABCDEFGH parallélépipède rectangle.

But : IJKL Losange ; IK = ? ; LJ = ?, Nature MKJ, MKI et MKL ; volume de la pyramide.

Démonstration :

ABCDEFGH parallélépipède rectangle.
Donc, les bases ABCD et EFGH sont des rectangles.
Donc, DA = CB = 6cm
et AB = DC = 8cm
De plus, I, J, K, L, M milieux respectifs de [AB], [BC], [CD], [AD] et [HG].

Et là... Ca coince !
Je n'arrive pas à expliquer que "J est équidistant de K et I", et donc que "JK = JI" et que "si un quadrilatère a deux côtés de même longueur, c'est un losange, donc IJKL losange".
En faite je ne sais même pas si c'est juste !

Vous pourriez m'aider à résoudre ce problème ? Merci d'avance !

Pyramide dans un pavé droit

Posté par
milnotes
re : Pyramide dans un pavé droit 28-02-11 à 20:28

Pour les longueurs JI rt JK, utilise un théorème sur la droite des milieux ...
mais il te faudra 4 cotés de même longueur pour obtenir un losange.

Posté par
Little_J
re : Pyramide dans un pavé droit 28-02-11 à 20:34

Oups, j'ai oublié un mot ><

"...Si un quadrilatère a deux côtés consécutifs de même longueur alors ..."

Autant pour moi.

Par contre, je n'ai pas compris "théorème sur la droite des milieux". On prend un peu le programme à l'envers, alors je me demandais si c'était un théorème des milieux ? Ca dépend peut-être des régions..

Si c'est bien ça, je ne vois pas du tout comme les utiliser
Quel triangle dois-je prendre ?

Posté par
gwendolin
re : Pyramide dans un pavé droit 28-02-11 à 21:07

bonsoir,

ABCD rectangle
DK=KC=AI=IB=4 cm
DL=LA=CJ=JB=3 cm
les triangles DLK, KCJ , JBI et LAI soont des triangles rectangles de même mesure---> LK=KJ=KI=LI--> IJKL est un losange de centre O (point de concours des
Pythagore DK²+DL²=LK²
4²+3²=16+9=25=KL²
--> LK=5 cm

KI?
DK=AI et (DK)//(AI) et ADK=90°--> AIKD est un //lo qui a un angle droit--> rectangle et (DA)//(KI) et DA=KI=6 cm

de même pour LJ=8 cm

MK=HL=EA=5 cm--> MKJ est un triangle isocèle en K
(MK)(KJ)--->MKJ rect en K
---> MKJ rectangle isocèle en K

(MK)(KI) et MK=5 cm, KI=6 cm
--> MKI rectangle en K

KJ=KL=5 cm
(MK)(KL)
--> MKL rectangle isocèle en K

V=1/3*surface de base *hauteur
V=1/3*surface IJKL*MK
surface IJKL=JL*IK/2

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1224 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !