Une équation fonctionnelle

On cherche les applications de \mathbb{R} dans \mathbb{R} vérifiant

$$(*) \quad \forall x \in \mathbb{R} \quad f \circ f(x) = 6x - f(x)$$

Premiers résultats

- Il existe des solutions, par exemple $x \mapsto 2x$.
- Toutes les solutions sont injectives.

Si
$$f(a) = f(b) = y$$
 alors $f(y) = f \circ f(a) = 6a - y$ et $f(y) = f \circ f(b) = 6b - y$ d'où $a = b$.

— Si la fonction admet un point fixe, c'est zéro.

En effet si f(x) = x alors $f \circ f(x) = f(x) = x$ et en utilisant la relation (*) il vient x = 6x - f(x) = 6x - x d'où x = 0.

Itérations

Il est clair que la connaissance de a et de f(a) permet de calculer $f \circ f(a)$ en utilisant (*).

On pose $a_0 = a$, $a_1 = f(a)$ et de façon générale $a_{n+1} = f(a_n)$.

En utilisant (*) on a $a_{n+2} = f \circ f(a_n) = 6a_n - a_{n+1}$.

On reconnaît une suite récurrente d'ordre deux et un calcul simple montre que

$$a_n = \lambda(-3)^n + \mu \, 2^n \text{ avec } \lambda = \frac{2a_0 - a_1}{5} \; ; \mu = \frac{3a_0 + a_1}{5}$$

Remarque : On peut prolonger la suite $(a_n)_{n\in\mathbb{N}}$ en une suite pour les valeurs négatives de n tant que a_{n+1} admet un antécédent qui est unique car f est injective.

La suite des $f^{-n}(a)$ peut aussi être infinie. On a alors une suite $(a_n)_{n\in\mathbb{Z}}$ qui vérifie toujours $a_{n+1}=f(a_n)$.

Dans le cas où f est surjective, et donc bijective, toutes les suites sont de ce type.

Une première description

On utilise l'axiome du choix et on muni \mathbb{R} d'un bon ordre.

On prend la première valeur a et on lui choisi une image parmi les valeurs possibles 1 .

On supprime toutes les valeurs de la suite obtenue et on recommence avec la première valeur disponible.

Sauf erreur de ma part on obtient ainsi une fonction répondant à la condition (*).

Il presque évident qu'on les obtient toutes.

Mais je suis mal à l'aise avec ce genre de choses.

Étude du signe

On étudie quatre cas :

1.
$$f(\mathbb{R}^{*+}) \subset \mathbb{R}^{*+}$$

2.
$$f(\mathbb{R}^{*-}) \subset \mathbb{R}^{*-}$$

Par exemple il est impossible de choisir f(1) = 5 car on aurait $f \circ f(1) = 1$ puis $f^3(1) = 5$ or la relation (*) donne f(1) = 29. Mais $\left(3 \cdot 2^k \left(2^{n-1} - 1\right) + 2 \cdot (-3)^k \left((-3)^{n-1} - 1\right)\right)$ l'ensemble des valeurs interdites est au plus dénombrable.

Voir annexe

^{1.} La suite (a_n) ne doit pas comporter de répétition de valeurs.

3. $f(\mathbb{R}^{*+}) \subset \mathbb{R}^{*-}$

4.
$$f(\mathbb{R}^{*-}) \subset \mathbb{R}^{*+}$$

Dans le cas **1** avec $f^n(a) = \lambda(-3)^n + \mu 2^n$ on a évidement des valeurs négatives pour $f^n(a)$ si $\lambda \neq 0$.

On en déduit $\lambda = 0$ soit 2a - f(a) = 0 d'où $\forall a > 0$ f(a) = 2a.

Le cas 2 se traite de la même façon et on arrive à $\forall a < 0 \ f(a) = 2a$.

Les cas 3 et 4 sont un peu plus délicats.

Pour les traiter je vais supposer f bijective. ²

Pour le cas 3

Soit f une solution bijective vérifiant $x > 0 \Rightarrow f(x) < 0$.

Quelque soit a dans \mathbb{R}^{*+} on considère la suite $(a_k)_{k\in\mathbb{Z}}$ définie par $a_0=a$ et $a_{k+1}=f(a_k)$ ou, ce qui revient au même car f est bijective $a_k=f^{-1}(a_{k+1})$.

Par hypothèse si $a_k > 0$ alors $a_{k+1} < 0$.

On a donc $a_{k+2} = 6a_k + (-a_{k+1}) > 0$ comme somme de deux nombres strictement positifs. Il en découle que $a_{k+3} < 0$ et par une récurrence immédiate que $a_k = (-1)^k |a_k|$, autrement dit les signes de la suite $(a_k)_{k \in \mathbb{Z}}$ sont alternés.

En utilisant le fait que $a_k = \lambda(-3)^k + \mu 2^k$ on voit que si $\mu \neq 0$ la suite a un signe constant (celui de μ) quand k tend vers $-\infty$.

On a donc $\mu = 0$ et donc $3a_0 + a_1 = 0$ d'où f(a) = -3a quelque soit a > 0.

On fait la même chose pour le cas 4.

On suppose f continue et bijective

A La courbe représentative de f ne peut pas couper la droite y=x ailleurs qu'en zéro.

B Toutes les suites $f^{-n}(a)$ tendent vers 0 quand n tend vers $+\infty$ donc f(0)=0 par continuité.

Soit x un nombre strictement positif, on a deux cas possibles:

1.
$$x > f(x)$$

2.
$$x < f(x)$$

cas 1.

D'après **A** on a $\forall x > 0$ f(x) > x > 0 et donc, d'après l'étude du signe $\forall x > 0$ f(x) = 2x.

Comme f est injective on ne peut pas avoir x < 0 et f(x) > 0.

On a donc $f(\mathbb{R}^{*-}) \subset \mathbb{R}^{*-}$ et

$$\forall x < 0 \quad f(x) = 2x.$$

Comme f(0) = 0 d'après **B** on a

$$\forall x \in \mathbb{R} \quad f(x) = 2x.$$

cas 2.

Il est impossible dans ce cas que $\forall x > 0$ f(x) > 0. En effet on aurait alors

$$\forall x > 0 \ f(x) = 2x > x.$$

Donc $\exists x > 0 \ f(x) < 0$.

Et par continuité $\forall x > 0 \ f(x) < 0$.

D'après l'étude de signe on a alors

$$\forall x > 0 \ f(x) = -3x.$$

^{2.} Je n'ai pas trouvé de démonstration sans cette supposition, en fait je me demande si il existe des fonctions de ce type qui ne soient pas bijectives.

Comme f est injective on a alors $\forall x < 0 \ f(x) > 0$.

D'où $\forall x \in \mathbb{R} \ f(x) = -3x$.

Et la conclusion:

Si f est une solution de (*) continue et bijective alors f est la fonction $x \mapsto 2x$ ou la fonction $x \mapsto -3x$.

Annexe: valeurs possibles pour f(a)

Sauf si f est la fonction nulle, une fonction vérifiant (*) ne peut pas comporter de cycle du genre :

$$a_k \mapsto f(a_k) \mapsto \cdots a_k$$

En effet on a $f^n(a) = \lambda(-3)^n + \mu \, 2^n$ qui n'est évidemment pas périodique si $\lambda \neq 0$ ou $\mu \neq 0$. Mais on peut avoir une suite de ce type telle que $a_{k+n} = a_k$ pour un couple $(k,n) \in \mathbb{N} \times \mathbb{N}^*$. Dans ce cas la suite $(a_k)_{k \in \mathbb{N}}$ ne peut pas représenter la suite des itérés $(f^f(a))_{k \in \mathbb{N}}$ pour une fonction f.

Par exemple en prenant $a_0 = 9$ et $a_1 = 13$ on a

$$a_2 = 41$$
; $a_3 = 37$; $a_4 = 209$; $a_5 = 13$; $a_6 = 1241...$ et la valeur $f(13)$ n'est pas définie.

On cherche à quelles conditions sur a_0 et a_1 il existe $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$ tels que : $a_{k+n} = a_k$.

On a vu que quelque soit l'entier i on a $a_i = \frac{1}{5}(2a_0 - a_1).(-3)^i + \frac{1}{5}(3a_0 + a_1).2^i$. L'égalité demandée s'écrit donc

$$(2a_0 - a_1) \cdot (-3)^{k+n} + (3a_0 + a_1) \cdot 2^{k+n} = (2a_0 - a_1) \cdot (-3)^k + (3a_0 + a_1) \cdot 2^k$$

$$a_0 \left(3 \cdot 2^k \left(2^n - 1 \right) + 2 \cdot (-3)^k \left((-3)^n - 1 \right) \right) = -a_1 \left(2^k \left(2^n - 1 \right) + (-3)^k \left((-3)^n - 1 \right) \right)$$

Il est facile de voir que les coefficients de a_0 et a_1 dans la dernière égalité ne sont jamais nuls car n est un entier strictement positif.

On a donc deux cas possibles pour l'égalité :

- soit a_0 ou a_1 est nul alors f(0) = 0 et tous les termes de la suite sont nuls;
- soit a_0 et a_1 sont non nuls et

$$\frac{a_1}{a_0} = \frac{-\left(2^k \left(2^n - 1\right) + (-3)^k \left((-3)^n - 1\right)\right)}{\left(3 \cdot 2^k \left(2^n - 1\right) + 2 \cdot (-3)^k \left((-3)^n - 1\right)\right)}$$

On a ainsi la liste des valeurs interdites pour f(a) en fonction de a.