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FURTHER APPLICATIONS IN STATISTICS OF THE 
Tm (x) BESSEL FUNCTION. 

BY KARL PEARSON, S. A. STOUFFER AND F. N. DAVID*. 

(1) THE Tm (x) function was defined in a paper by Pearson, Jeffery and Eldertont 
to be given by 

Tqn($)=,\/1- 2 
r-( Fi)$m Krn(K) ........................ (i), T. (x 2m r (m + j)x 

where Km (x) is the Bessel Function of the second order and imaginary argument. 
Here Tn (x) = Tm (- x), while x on the right is always to be given its numerical 
value. Remnembering this, we need not write I m K. (I x j) in the equation. 

If y-MT,, (x) .................................... (ii) 

be treated as a frequency curve, it will be symmetrical and run from - oo to + co of x. 
The constant in (i) has been so chosen that 

r+r 
j ydx =2M J YM (x) dx =MiV. 

An integral form of Km (x) is given by+ 

Km(x)= 2 
m 
A + e-t(t2-I)n-idt .(iii). 

2m I' (m +j)J 

Hence we may write (ii) in the form 

Y= M I XF2(m e-x (t-1l)mi dt . (iv). 

(2) Consider in the next place the curve 

y = Yoe a (1 + - ) ,,, ........................... (V)^ 

the origin being the mode at distance a from the start of the curve. 

It follows easily that 
M pP+le) (vi), 

ahre(p 1) .(visi)............... 
where M is the total frequency. 

* The suggestion of the problem and the selection of the illustrative examples were provided by 
S. A. Stouffer, the solution through the T.,,,(x) function was given by K. Pearson, who is also responsible 
for the text. Florence N. David computed the table of the probability integral of the Tm((x) distribution. 

t Biometrika, Vol. xxi. p. 184. 
1 G. N. Watson: A Treatise on the Theory of the Bessel Itfnctions, p. 172, Equation (4). 
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Thus the curve can be written 

a Y =M {( + a ) ..........I....... . (vii). a r(p+1) (ai) 
Write z =p (1 + and the moments about the start of the curve can be found at 

once. These lead to* 
Mean = a (p + l)/p 

Standard Deviation = = a P + p. . (viii), 
l=p1, s-3p+1 

providing the well-knlown relation, 2,82- 3,81 - 6 = 0. 

(3) Now suppose there are two independent variates u and v both of which have 
frequency distributions provided by Equation (vii). We assume the two distributions 
to have the same p, but to have different standard deviations a1 and o2, or, what 
amounts to the same thing, different nmodal distances a and b. We will measure our 
variates u and v from the start of their curves, which then take the form 

YJ1= M-Pe- a (a)/r (p + i), 

and y2=M e b (PV) /(p +i). 

If we take w- Ml M x w2 we obtain the combined frequency surface M M 

a bFr2(p+ 1) -a b). 

lNow pult X =P + anld Y=P (b-- ), then the element for integration of the 

above surface is dtudv, or if we take it d (P) d wP! we may replace it by dXdY, 
and we have for integration 

( +)22pe- (X2 
_ 

Y2)p dXdY ..................... (x). 

We have to integrate this out for X to get the distribution curve of Y. In the 
uipper octant XOB (Fig. 1, p. 295) the limit for X is clearly X = Y to X = oo along 
the shaded area. Or, the curve of distribution of Y is 

Z =Fr2-(p +i1) 22P, J e-X(X2_ Y2)P dX ............... (x bis). 

Put X= Yt and we have 
m 

1',pJ 
Co 

YIt(t2_1Pt . x) Z = _ P i e-T . 1)p dt .................. (xi). 

* Phil. Tranls, Vol. 185DA, p. 37,3. 
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If we take the lower octant XOA, the limits of X are - Y to ao, but as Y is now 
negative we get precisely the same result, or we say that the whole curve of distri- 
bution of Y is (xi), Y being taken as positive, and from 0 to oo , and mirrored in the 

V U 
axis of X. This result also flows from the fact that the distribution of v _ u must be ba 
a symmetrical curve, as the frequency curves for u/a and v/b are identical. 

Now if in (iv) we write x=Y, m-p + , we see that the z of (xi) is given by 

z = MT9+j (Y) ....................... (xii), 

which leads to IM for the area of our half curve. In other words our curve for Y is 
the T2,, curve mirrored on itself The ordinates of this curve have been computed 
by Dr E. M. Elderton*. 

B 

Y |XX 

o Au/ 
Fig. 1. 

(4) Now the odd moments of the mirrored curve vanish. Let uis find the even 
moment-coefficients. We have from (x) 

MU28 = 2 (pM 1)222p jj Y28 e.X (X2- _Y2)PdYdX, 

where the limits of X and Y are to be chosen so as to cover the upper octant BOX. 
Now if we integrate first with regard to Y, the limits will be from 0 to X, and then 
with regard to X from 0 to so. Thus 

1 00 rx 
F2s 22p- F2(p + 1) Jce-X J Y28 (X2 - Y2)P d YdX ......... (xiii). 

Put Y=XX and we have 

1s = 
22pk2(p + 

e 
feX 28+2p+l ? 

O2s (1 _ x2)p dXdX, ~2 (p +r ~ J 

* See Biometrika, Vol. xxi. pp. 194-201, or ITables for Statisticians and Bionietriciins, Part I. 
pp. lxxix-lxxxviii and 138-144. 
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or, if X2 = X, 

12s22PF2(p?l)Pr (2S+2p+2)Js- (1 -K)Pdlc 

=22P2(p+1) r (2s + 2p + 2)r (s +1) r (p + 1) 

If s=- O, 'o = 22P(p + 1) (p+ 2) - 

Hence /12s=(-P2p? 2) F((xp++) P(+).(Xiv), 

and (2P + 3) (2P + 2) 1 = 2p + 2 ........................ (xv). 

Generally (2s - 1) (2p + 2s) /12s-2 ................... (xv bis), 

/22s (2s-1) (2p + 2.s) -/2s-2 
(tt2)s 2p + 2 (p2)S'' 

or, i-2 = (2S-1) I + 
2 (s 1) 

2s-4 .................. (XVi). 

Thus finally 

,2,3-2 = (2S - )(s - 3. ........ I I1+ s + I (1 + s + 2) . ......... (1 ).xvii). 

It will be clear that when p ;o we obtain 

82s-2 =(2s -1) (2s - 3) ... , 
the familiar /2,-2 formula for the normnal curve, into which the Tp+? function then 
passes. 

Consider the Type VII curve 
1 

(a= 
J 

(2 + X2)In 
Here we have 

32s-2=(2s-1)(2s-3) ... 1(I+2n ?) (i+ )I + (2 + n 5 
and /t2 = a2/(n - 3). 

Now it is clear that we can make /2 anid P4 agree in the Type VII and the TP+? 
cuirves *, but farther than that we cannot go, although the ,1's may not differ widely 
if n be considerable. The Tp+j curve has the further advantage that no moment- 
coefficients tend to become infinite, while if n be an odd integer, those for the Type VII 
curve may become so. For values of p not too great the Type VII will fit the dis- 
tribution of Y considerably better than the normal curve. For considerable values 
of p, both Type VII and the Tp?i curves pass into the normal curve. 

(5) A few further points may be noted. If p = - I the TO-curve asyimiptotes to 
the vertical at the origin, and this holds as long as p lies between - 1 and 0; if 

21 *We must take 1= Qr it= 2p? 7, and a = 2 -,/p+1) (p +2). p+1 n-5 
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p= 0, the T*-curve starts with a finite ordinate and makes a finite angle with the 
vertical, it is the exponential curve. If p be positive we see from (xbis) that 
dz/dY=O for Y=O, or the double mirror curves have a common tangent at the 
axis of symmetry and will in appearance form a single curve. If p be a positive 
integer it is possible to expand z in powers of Y, but the series does not present 
any great advantages to the computer. 

When p = 11, Dr Elderton's Tables terminate, but it is shown in the memoir by 
Pearson, Jeffery and Elderton * that when p = 11, the two curves 

and z = MTp+k (Y) 

M r P{ (2p + 7)} 1 .... ..(xviii) 
V27r(p+1)(p+2) r(p+3) (1 + y( (2p+7) 

4(p+l)(p+2)J 
coincide for practical statistical purposes. The areas of this latter curve up to given 
values of Y have been tabledt from p = - i to p = 12, but this hardly carries us 
beyond the Tm-tables. The completed (and now at press) Y'ables of the Incomplete 
B-function carry us up to 2p + 7 = 101, or p = 47. 

(6) Now let us turn to the means of samples of size n drawn from the Type III 
curve 

y=yo'e a (-) .' . (xix), 

where the origin is at the start of the curve and a is the distance to the mode from 
the start. Let us suppose a sample x1, x2, x3 ... xn drawn and let its mean be 
Z'n = (X1 + X2 + ... + xn)/n. Then the chance P of a sample lying between x1 and x1 + 8xi, 
X2 and X2 + X'2 ... Xn and x, + &x. is given by 

P const. xe + +Xn) (ela2 *n) dxdx2 ... dXn. 

Now get rid of x1 by introducing Xn as a variable and write 12 for 

We have 
np~ / ~X2\p /x2\P /XS... X \ 

P=const.xe x a -dn - ) -a (tn2 dX2dX3 ... dx$. 

Put X2 = 12x2' and integrate out for X2 = 0 to 12 or 02' O to 1. This will introduce 
a B-function into the constant, but leave us with 

* Cf. Biometrika, Vol. xxi. pp. 171 and 173 for accordance of the curves. Their equations are given 
on p. 185, where we must write in - l=p + i, or n=2p + 3. The two curves have then the same first four 

moment-coefficients. If 7 = Y/{2 %/(p + 1) (p + 2) }, then the proportional area from = 0 up to any arbitrary 
value of I is given by JI1, (j, p + 1), where I,, (-, p + 1) =B,7 (j, p + 1)/B (j, p + 1), B7, and B being the 
incomplete and complete Beta-functions. 

t See Biometrika, Vol. xxii. pp. 253-283, or Tables for Statisticians and Biometricians, Part II, 
pp. cxxv-cxlii and pp. 169-177. 
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P = const. xe e a d&, (j) 22 dx3 ... dxz. 

Write l3 = I s-, and proceeding in the same way, we find 

P = const. xe-a dx, (l-)3 + dx4...dx,, 
where ls = nan-4 - X5 Xn 

Continuing to repeat this process we ultimately get rid of all the variables but 
n and find* 

P=const.xe ad ......... . (xx). 

We now put this into the canonical forml for a Type III frequency curve, i.e. 

y =yo e -:ixl ( . ..................... (xx bis). 

Hence we must have P = n (p +1)-1, and P/A =np/a, or A na (p + 1) 

Accordingly: 

Mode of _= an(p+1) (x) 

Mean of , = M1'= p X ............ (xxi), P ~p 
2M' _A2(P+1)1 p+1) 1 2 

where i and o- are the mean and standard deviation of the population from which 
the sample of n is drawn. Lastly 

4 
B, = + and B2=3+3B1 .................. (xxii). 

Clearly, if n and p are not very small, then (xx bis) will approach inuch nearer to 
a normal distribution than the parent population (xix). 

(7) We can now apply our results to particular cases. If we draw two individuals 
out of Type III curves like (xix), with the same skewness as measured by p, then if 
a and a' be their modal distances, and 

(X2 Xl\/ \ X2 XI\ V 1(X2 x' 
Y=p ---- (p + 1) =-r? = \(x + J 

a2 a, /X XI t a-X 

for these are all equivalent, then the distribution of Y is given by 
z = Ml +j (Y). 

If the two individuals are taken from absolutely the samne population, i.e. a2= 1 = a, 
then 

Y= (2-x =(p + l) =2 -I = )X2 _. 

* This result was published by Church: see Biornetrika, Vol. xviii. p. 336. 
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Such results, however interesting in the case of experimental sampling in the 
Laboratory, where we have a knowledge of the parent population, will hardly be of 
practical service, because we should usually lack a knowledge of p, x and 0r. 

Now turn to (xx), and suppose we have taken two samples of n and that their 

means are !n and .7n', then the distribution of Y = P ($n - $4) will be 

z = Tp+ (Y) = MT(,+1) (Y) .................. (xxiii). 
There are now a variety of ways in which it is possible to express Y. In the first 

place P/A = P, where p and a refer to the parent population, but mean - mode 

=a_X _ say. Again P - 2 Thus we have 
p a o- N/8 - 

- =-n n:('- i) 2 2n............ ()xxiv). 

X -Z -/a1 ?x 

Further, we need the value of the p + 1 in the degree of the Tm function; we 
have 

N_ ~ 2 4 

X 
. 

_(X)2 ........................ (xxv). 

Here $, OC, a-, and ,81 all refer like p to the parent population. Clearly some two of these 
quantities X and $, X and a-, or 81 and -,, must be known, or we cannot determine 
a and p. We shall see later that in certain other applications p is known, and then 
probably a-, is the best quantity to seek for. It might be thought that X would be 
easy to find. It may be so, if the start of the curve can be determined, but it must 
be remembered that Z is the miean measured from a definite point of the parent 
population, i.e. the start of the parent population, and this may be quite unknown, 

- does Inot involve this knowledge, but the mode is not an easily determined 
character. On the whole ,81 and o-, can probably be most easily obtained from the 
samples. Of course this refers to cases in which the parent population is unknown, 
but suspected of having a skewness which may be approximated to by a Type III 
curve. The procedure here would be to determine to the second and third momnent 
coefficients of the pooled samples, and thus obtain the best approximation which is 
available to /]9 and a-. of the supposed parent population. 

We then take qn = ,B I! and ~~ 
2'~ 2 2n '- ....................... (xxvi), 

and test whether the probability integral of TM. (Y) has a value sufficiently large 
to justify us in assutming that SCt' and -Tn came from the same population. 

Perhaps a more useful case occurs when one sample is sufficiently large to give 
reasonable values for the constants, and we ask whether the other could have been 
drawn from the same population. In this case we may determine p and a with 
sufficient accuracy from the large sample and measure the probability of xn for the 
second sample from (xx) or (xx bis) by aid of the Tables of the Incomplete r-function. 
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