Fiche de mathématiques
> >

Équations

Partager :

Fiche relue en 2016

exercice 1

Une mère a 30 ans, sa fille a 4 ans.
Dans combien d'années l'âge de la mère sera-t-il le triple de celui de sa fille?



exercice 2

Aline a cueilli 84 trèfles; certains ont 3 feuilles, les autres 4 feuilles. On compte en tout 258 feuilles.
a) x désigne le nombre de trèfles à 3 feuilles et y celui des trèfles à 4 feuilles. Mettre le problème en équation.
b) Résoudre le système précédent et en déduire le nombre de trèfles à 4 feuilles.



exercice 3

deco
Dans une papeterie, 4 classeurs et 1 paquet de feuilles coûtent 72 francs, 3 classeurs et 2 paquets de feuilles coûtent 59 francs.
a) Si x est le prix d'un paquet de feuilles et y le prix d'un classeur, écrire un système d'équations traduisant les données.
b) Calculer le prix d'un classeur et celui d'un paquet de feuilles.



exercice 4

Le premier devoir surveillé a duré une heure; le deuxième a duré deux heures. Il est décidé de calculer la moyenne en attribuant le coefficient 1 au devoir d'une heure et le coefficient 2 au devoir de deux heures.
a) Alain a eu 15 au premier devoir et 9 au deuxième devoir. Calculer sa moyenne.
b) Boris a eu 8 au premier devoir. Sa moyenne est 12. Combien a-t-il eu au deuxième devoir?
c) Carine a 12 de moyenne, mais en permutant ses deux notes, elle aurait treize de moyenne. Quelles sont ses deux notes?



exercice 5

Un téléphone portable et son étui coûtent ensemble 110 ?. Le téléphone coûte 100 ? de plus que l'étui.
Quels sont les prix du téléphone et de l'étui ?



exercice 6

Anatole, Barnabé et Constantin possèdent respectivement x euros, y euros et 40 euros. Ils jouent au poker avec la règle suivante: « La partie se déroule en 3 manches. Celui qui perd une manche doit doubler l'avoir des deux autres. »
Voici le déroulement de cette partie de poker :
Anatole perd la première manche, puis Barnabé perd la seconde et enfin Constantin perd la troisième. A la fin de la partie chacun de nos trois compères possèdent 80 euros.

1. Compléter le tableau suivant en justifiant vos réponses:
  Avoir de Anatole en ? Avoir de Barnabé en ? Avoir de Constantin en ?
Au début de la partie x y 40
A la fin de la manche perdue par Anatole      
A la fin de la manche perdue par Barnabé      
A la fin de la partie      


2. Ecrire que chaque joueur possède 80 euros à la fin de la partie. Vous obtiendrez alors 3 équations à 2 inconnues.

3. Prendre deux quelconques des trois équations et les résoudre. Vérifier que les valeurs ainsi trouvées pour x et pour y satisfont la troisième équation.

4. Quels étaient les avoir d'Anatole et de Barnabé en début de partie. Lequel des trois joueurs a réalisé le plus gros gain.



exercice 1

Soit x le nombre d'années où l'âge de la mère sera le triple de celui de sa fille.
30 + x = 3 × (4+x)
30 + x = 12 + 3x
2 x = 18
x = 9
Dans 9 ans, l'âge de la mère(30+9=39 ans) sera bien le triple de celui de sa fille (4+9=13 ans).



exercice 2

a)
\left \lbrace \begin{array}{c} x + y = 84 \\ 3x + 4y = 258 \\ \end{array} \right.

b)
\left \lbrace \begin{array}{c} 3x + 3y = 252 \\ 3x + 4y = 258 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 84 -y \\ y = 6 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 78 \\ y = 6 \\ \end{array} \right.
Il y a donc 6 trèfles à 4 feuilles.



exercice 3

a)
\left \lbrace \begin{array}{c} x + 4y = 72 \\ 2x + 3y = 59 \\ \end{array} \right.

b)
\left \lbrace \begin{array}{c} x = 72 - 4y \\ 144 - 8y + 3y = 59 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 72 - 4y \\ -5y = -85 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 72 - 4y \\ y = 17 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 4 \\ y = 17 \\ \end{array} \right.

Un classeur coûte donc 17 francs alors qu'un paquet de feuilles vaut 4 francs.



exercice 4

a) La moyenne d'Alain est 11.

b) La seconde note de Boris est 14.

c) x + 2y = 36 et 2x + y = 39. Donc la première note (x) est 14, et la seconde (y) est 11.



exercice 5

Attention à ne pas répondre trop vite à ce problème :
en posant p le prix de l'étui, on a :
(p + 100) + p = 110
2 p = 110 - 100
p = 10 / 2
p = 5
L'étui coûte donc 5 ? et le téléphone vaut 105 ?.



exercice 6

1.
deco Avoir de Anatole en euros Avoir de Barnabé en euros Avoir de Constantin en euros
Au début de la partie x y 40
A la fin de la manche perdue par Anatole x - y - 40 2y 80
A la fin de la manche perdue par Barnabé 2x - 2y - 80 2y - (x - y - 40) - 80
= 3y - x - 40
160
A la fin de la partie 4x - 4y - 160 6y - 2x - 80 160 - (2x - 2y - 80) - (3y - x - 40)
= -x - y + 280


2.
\left \lbrace \begin{array}{c} 4x - 4y - 160 = 80 \\ 6y - 2x - 80 = 80 \\ -x - y + 280 = 80 \\ \end{array} \right.
soit :
\left \lbrace \begin{array}{c} x - y = 60 \\ - 2x + 6y = 160 \\ -x - y = -200 \\ \end{array} \right.
soit :
\left \lbrace \begin{array}{c} x - y = 60 \\ -x + 3y = 80 \\ x + y = 200 \\ \end{array} \right.

3. Prenons la première et la troisième équation :
\left \lbrace \begin{array}{c} x - y = 60 \\ x + y = 200 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 60 + y \\ x + y = 200 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 60 + y \\ 60 + y + y = 200 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 60 + y \\ 2y = 200 - 60 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 60 + y \\ 2y = 140 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 60 + y \\ y = 70 \\ \end{array} \right.

\left \lbrace \begin{array}{c} x = 60 + 70 = 130 \\ y = 70 \\ \end{array} \right.
Vérification : -x + 3y = - 130 + 3 × 70 = 80

4. Anatole avait 130 euros, Barnabé 70 euros et Constantin 40 euros.
Pour Anatole : 80 - 130 = -50, il a donc perdu 50 euros.
Pour Barnabé : 80 - 70 = 10, il a gagné 10 euros.
Pour Constantin : 80 - 40 = 40, il a gagné 40 euros.
Le plus gros gain est donc réalisé par Constantin.
Publié le
ceci n'est qu'un extrait
Pour visualiser la totalité des cours vous devez vous inscrire / connecter (GRATUIT)
Inscription Gratuite se connecter


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1236 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !