Inscription / Connexion Nouveau Sujet
Niveau 3 *
Partager :

2016... et demi-tour !

Posté par
littleguy
04-02-16 à 18:19

Bonjour,

Bien sûr vous vous attendez à quelque chose sur 2016. Bon, d'accord, mais il est question aussi  de 6102.

Dans chacun des deux calculs demandés les seuls nombres autorisés sont 2 , 0 , 1 ,  6  et les seuls symboles autorisés sont  les quatre opérations élémentaires  + , - , x (ou *) ,  / , mais aussi  le point d'exclamation ! , la racine carrée   (ou V), et le symbole puissance ^.
Les parenthèses sont bien sûr autorisées.

Si vous n'êtes pas habitué, Il est vivement conseillé de jeter un coup d'œil sur les énigmes du même genre posées en 2015…

Premier calcul : Il s'agit d'obtenir le nombre 2016 en utilisant au moins une fois mais un minimum de fois les nombres 2, 0, 1, 6.

Second calcul : Il s'agit d'obtenir le nombre 6102 en utilisant au moins une fois mais un minimum de fois les nombres 2, 0, 1, 6.

Bonne recherche !

Posté par
trapangle
re : 2016... et demi-tour ! 04-02-16 à 20:25

gagnéBonsoir,

Je ne vois pas de contrainte sur le nombre d'opérations ou de symboles qu'on peut utiliser, donc je tente :

2016 = (((2+0+1+6)!!!!!)!!!!!!!!!!!!!!!!!!!!!!)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

soit 2016 = (((2+0+1+6)!5)!22)!500

6102 = ((((6+1)!!!)!!!!!!!!!!!!!!!!!!!!!!!!+0!)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!)*2

soit 6102 = ((((6+1)!3)!24+0!)!86)*2

Mais ça ne m'a pas l'air de valoir trois étoiles et personne n'a encore répondu, j'ai dû louper quelque chose...

Posté par
Yaya23
re : 2016... et demi-tour ! 04-02-16 à 21:37

perduBonjour

Pour 2016 je propose :

2^(10+1) - 2^(6-1) = 2^11 - 2^5 = 2048 - 32 = 2016

Posté par
pondy
re : 2016... et demi-tour ! 04-02-16 à 21:44

perduBonjour
(6+1)!/(6-0!)*2=2016   (soit 5 chiffres utilisés)
(6+2)!/6-6!+6²(0!+2)-6=6102 (soit 9 chiffres utilisés)

Posté par
rschoon
re : 2016... et demi-tour ! 04-02-16 à 23:30

perduBonjour à tous.
Pour 2016, je propose : (((1+6)!!!)!!!!!!!!!!)/2-0
Pour 6102, je propose : 6!!!+((1+0+6!!!!)!!!!!!!)^2

Merci pour l'énigme

Posté par
royannais
re : 2016... et demi-tour ! 05-02-16 à 08:08

perdu2^(2*6-1^0)-(6+2)!!!! = 2016

((2*2)^2)!!!!-6*(6+1^0) = 6102

Posté par
trapangle
re : 2016... et demi-tour ! 05-02-16 à 10:44

gagnéÀ moins qu'il eût fallu comprendre que tous les nombres ne devaient pas être utilisés ? Ou bien avec la contrainte supplémentaire que le pluriel à "les nombres 2,0,1,6" indique qu'il en faille au moins deux, comme dans l'énigme  "Des maisons et des numéros" ?

Dans ces cas j'aurais dû trouver :
2016 = ((6!!)!27)!1006 ou
2016 = (((6+0)!!)!27)!1006

et

6102 = ((((6!!)!29)!898+1))!59
et je ne crois pas que 6102 soit possible avec un seul nombre.

Tiens, j'ai voulu utiliser l'incrément informatique ("6++" revient à faire "6+1") mais je me dis que si cette opération est autorisée, ça doit être trop facile. L'énoncé parle des quatre opérations élémentaires, le mot "addition" n'est pas écrit explicitement mais si l'incrément pouvait être utilisé, ça ferait plus que quatre opérations, me semble-t-il.

Posté par
torio
re : 2016... et demi-tour ! 05-02-16 à 13:25

gagnéDans les deux cas on utile une seule fois chaque nombre :

2016 = (2^6 -1) !!!!!!!…. !!  + 0 (il y a 31 fois  le point d'exclamation)

6102 = (((((6+2)*1)!!!!!!) !!!!!!!!! + 0!) !!! <86 fois>!!!!) !!!!!!!! <3049 fois> !!!!!!!!



2016... et demi-tour !

Posté par
masab
re : 2016... et demi-tour ! 05-02-16 à 21:26

gagnéBonjour littleguy,

On notera
fac(7,2) = 7!!
fac(19,3) = 19!!!
et plus généralement fac(n,k) désignera l'entier n>=1 suivi de k>=1 points d'exclamation (multifactoriel).

On a les 2 formules
fac(fac(2^(6-1^0), 25), 215) = 2016
fac(2-0!+fac(fac(1+6, 3), 24), 59) =  6102

Chacune de ces formules utilise une fois et une seule chacun des chiffres 2, 0, 1, 6 .
Merci pour cette énigme sur les formules.

Posté par
masab
re : 2016... et demi-tour ! 06-02-16 à 16:52

gagnéVoici une formule plus simple

(2^6-1+0)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = fac(2^6-1+0, 31) = 2016

mais toujours de nombreux points d'exclamation...

Posté par
castoriginal
re : 2016... et demi-tour ! 07-02-16 à 20:19

gagnéBonsoir,

voici la réponse à la première question
2016 = ( 2^6 - 1^0) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!           (multifactorielle  de 63  k=31 points d'exclamation )   soit 2016 = 63 x 32

pour la deuxième question, je trouve
6102 = (((6+2)!!!!!!)!!!!!!!!!)+1+0)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

ou expliqué autrement  d'une façon peu rigoureuse malheureusement
(8 multifactorielle ! 6)multifactorielle !9 = 112     112+1+0=113        ( 113)multifactorielle ! 59   =  6102

Posté par
dpi
re : 2016... et demi-tour ! 14-02-16 à 18:51

gagnéBonjour,

Absent 1 semaine adieu le top...
J'ai des solutions à 2 doublons classiques.
En relisant l'énoncé j'ai apprécié le conseil de regarder les
précédentes.

La méthode de Masab est excellente, si on ne se trompe pas
dans le multifactorielles.
2016 =(2^{6}-1)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!+0  
Pour mémoire 31 !

6102 =(((6+2)!!!!!!)!!!!!!!!!+1)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!+0
Pour mémoire 6 puis 9 puis 59 !

Posté par
KinaMay
re : 2016... et demi-tour ! 22-02-16 à 18:45

perdubonjour,

premier calcul :
(2+1)x(6+1)x(2^6+(2^6/2))+0
=21x(64+32)
=21x96
=2016

second calcul :
(6+1)!+((6-1)!+6x9+3)x6+0
=5040+(120+57)x6
=5040+1062
=6102

bon, c'est nul ce que j'ai fait mais au moins j'ai trouvé un truc, merci pour l'énigme

Posté par
LittleFox
re : 2016... et demi-tour ! 25-02-16 à 17:54

gagné
2016 peut s'écrire de la façon suivante :
(6!!!)!!!!!! + ((2+1)!)! + 0

6102 peut s'écrire de la façon suivante :
((6!!!)!!!!!!!!!!!!!!!)!!!!!!!!!!!!!!!!!!!!!!!!!) - (((2+1)!)!!!)!!!!!!!!! + 0

Ces calculs utilisent une et une seul fois chacun des nombres 2, 0, 1 et 6.

Détails :
(6!!!)!!!!!! + ((2+1)!)! + 0 = (6!3)!6 + (3!)! = 18!6 + 6! = 1296 + 720 = 2016
((6!!!)!!!!!!!!!!!!!!!)!!!!!!!!!!!!!!!!!!!!!!!!!) - (((2+1)!)!!!)!!!!!!!!! + 0 = ((6!3)!15)!25 - ((3!)!3)!9 = (18!15)!25 - (6!3)!9 = 54!25 - 18!9 = 6264 - 162 = 6102

Posté par
littleguy
re : 2016... et demi-tour ! 26-02-16 à 23:01

Fin de l'énigme. Les "points d'exclamation" étaient bien sûr attendus.  Bravo !!!

Posté par
dpi
re : 2016... et demi-tour ! 28-02-16 à 09:45

gagnéBonjour
Petite observation:
L'utilisation des multifactorielles permet de fabriquer de nombreuses solutions,
toutefois la notation  !_{8} par exemple pour !!!!!!!! introduit le 8
et donc un chiffre supplémentaire .
L'acceptation induirait la possibilité pour les racines ou les puissances et dénaturerait
l'esprit de l'énigme.

Posté par
littleguy
re : 2016... et demi-tour ! 28-02-16 à 12:00

Tous ceux qui ont utilisé ce raccourci de notation l'ont parfaitement expliqué (comme torio par exemple), donc pas de lézard.

Posté par
EchoIsON
re : 2016... et demi-tour ! 27-03-16 à 17:55

Bonjour.

2^{6-1}(2^{6}-1)+0 = 2016

Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 120:24:50.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !