Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

35. Diagramme en arbre

Posté par
Karina20
15-11-15 à 14:21

Une urne contient deux boules rouges, 3 boules vertes et cinq boules bleues indiscernable au toucher. On tire successivement 2 boules de l'urne sans y replacer la première boule tirée.

A) calcule la probabilité de tirer 2 boules de même couleur.

B) calcule la probabilité de tirer deux boules de couleur différentes

Posté par
kenavo27
re : 35. Diagramme en arbre 15-11-15 à 14:35

bonjour,
on dit "BONJOUR"

Citation :
Une urne contient deux boules rouges, 3 boules vertes et cinq boules bleues indiscernable au toucher. On tire successivement 2 boules de l'urne sans y replacer la première boule tirée.

A) calcule la probabilité de tirer 2 boules de même couleur.

B) calcule la probabilité de tirer deux boules de couleur différentes


imaginons qu'on te demande " proba de tirer 2 boules vertes:
nombre de cas favorables : (32
nombre de cas possibles : (102
proba:......

Posté par
Godson
re : 35. Diagramme en arbre 12-06-17 à 13:48

peut-on faire un arbre
de choi ?

Posté par
malou Webmaster
re : 35. Diagramme en arbre 12-06-17 à 13:56

oui, bien sûr

Posté par
carpediem
re : 35. Diagramme en arbre 12-06-17 à 14:54

salut

kenavo27 :faux car tirage sans remise ...

Posté par
Godson
re : 35. Diagramme en arbre 12-06-17 à 15:47

nous sommes dans un cas tirage sans remise donc on applique la formule d'arrangement.
de plus on peut tirer
2rouges ou 2vertes ou 2 bleues
donc calcule bien fait on trouve
p(A)=3/10 si je ne me trompe pas

Posté par
Godson
re : 35. Diagramme en arbre 12-06-17 à 15:55

svp aider moi a faire l'arbre de choix j'ai des difficultés à le faire
merci!

Posté par
malou Webmaster
re : 35. Diagramme en arbre 12-06-17 à 16:34

il serait temps de s'avoir s'organiser avec un arbre...
sauf erreur, voici le début, termine le !
35. Diagramme en arbre

Posté par
Godson
re : 35. Diagramme en arbre 12-06-17 à 16:41

svp j'ai pas compris le tirage 2
au niveau de V et B
je pensais a 2/9 V au lieu de 3/9
et 4/9 B au lieu de 5/9 Bsvp j'ai pas compris le tirage 2
au niveau de V et B
je pensais a 2/9 V au lieu de 3/9
et 4/9 B au lieu de 5/9 Bsvp j'ai pas compris le tirage 2
au niveau de V et B
je pensais a 2/9 V au lieu de 3/9
et 4/9 B au lieu de 5/9 B

Posté par
Godson
re : 35. Diagramme en arbre 12-06-17 à 16:44

ok! je vois..merci avous

Posté par
malou Webmaster
re : 35. Diagramme en arbre 12-06-17 à 16:45

deux boules rouges, 3 boules vertes et cinq boules bleues dans l'urne

1er tirage : je tire 1 rouge
il reste donc 9 boules qui sont 1 rouge, 3 vertes et 5 bleues
non ?

Posté par
TheMathHatter
re : 35. Diagramme en arbre 12-06-17 à 17:18

Salut,

Carpediem :

Citation :
kenavo27 :faux car tirage sans remise ...


Je dois etre mal reveille ce matin. Un tirage sans remise ne correspond-il pas a un tirage simultane ?

La reponse de Kenavo donne bien 1/15 qui est bien la proba d'obtenir 2 vertes non ? (comme le 3/10 * 2/9 obtenu avec l'arbre).

Cela dit je suis d'accord que l'arbre est plus naturel surtout que les problemes classiques avec arrangements/permutations/combinaisons ne sont plus vraiment au programme, meme en TS.

Posté par
malou Webmaster
re : 35. Diagramme en arbre 12-06-17 à 17:28

alors ce n'est pas parce que la proba est la même que le dénombrement est le même....et on peut arriver à un résultat de proba juste avec des dénombrements qui ne correspondent pas à l'expérience...

Posté par
Barbidoux
re : 35. Diagramme en arbre 12-06-17 à 17:37

arbre ...

35. Diagramme en arbre

Posté par
TheMathHatter
re : 35. Diagramme en arbre 12-06-17 à 17:47

Malou,  je suis d'accord pour  les denombrements mais la on demande les probabilites. Est-ce que tu peux me donner un contre exemple de tirage sans remise ou la methode de kenavo ne donnera pas le bon resultat ?

Posté par
flight
re : 35. Diagramme en arbre 12-06-17 à 18:19

salut

Une urne contient 2 boules rouges, 3 boules vertes et 5  boules bleues indiscernable au toucher. On tire successivement 2 boules de l'urne sans y replacer la première boule tirée.

calcul de tout les tirages possibles : comme il y a  10 boules en tout
on aura 10*9 = 90 tirages possibles

A) calcule la probabilité de tirer 2 boules de même couleur.
c'est avoir 2 rouges ou 2 vertes ou 2 bleues
P = (2*1  +  3*2   + 5*4)  / 90 = 28/90

B) calcule la probabilité de tirer deux boules de couleur différentes
c'est avoir  RV ou RB ou VB   ou VR ou BR ou BV
P =2*( 2*3 + 2*5 + 3*5)/90 = 62/90

Posté par
flight
re : 35. Diagramme en arbre 12-06-17 à 18:20

de plus si on prend comme variable aleatoire X = au nombre de couleurs differentes
X peut prendre les valeurs 1 ou 2   ( en effet une seule couleur ou deux couleurs)
et la somme  P(X=1)+P(X=2)= 28/90 + 62/90  = 1  

Posté par
flight
re : 35. Diagramme en arbre 12-06-17 à 18:25

si le tirages est simultané
facon de prendre 2 boules parmi 10 :   C(10,2)= 45 possibilités de tirage de 2 boules

P(avoir une seule couleur )= P(RR)+P(BB)+P(VV)= [C(2,2) + C(3,2)+ C(5,2)] / 45  =
(1 + 3 + 10 )/45 = 14/45

P(avoir deux couleur)= (C(2,1)*C(3,1) +  C(2,1)*C(5,1)  +  C(3,1)*C(5,1) )/ 45  = (6+10 + 15)/45= 31/45

la encor la somme des proba vaut bien 1

Posté par
flight
re : 35. Diagramme en arbre 12-06-17 à 18:28

si le tirage est avec remise

facon de prendre 2 boules parmi 10 :   10²=100 possibilités de tirage de 2 boules

P(avoir une seule couleur )= P(RR)+P(BB)+P(VV)= [2² + 3²+ 5²] / 100  =
38/100

P(avoir deux couleur)= (2*3*2) +  2*5*2  +  3*5*2)/100  = 62/100

la encor la somme des proba vaut bien 1

Posté par
kenavo27
re : 35. Diagramme en arbre 12-06-17 à 18:46

bonjour à tout le monde,
Je maintiens

Citation :
imaginons qu'on te demande " proba de tirer 2 boules vertes:
nombre de cas favorables : (32)
nombre de cas possibles : (102)
proba:......

proba=1/15 ou 6/90
proba tirer 2 rouges : (22)/(102)
= 1/45 ou 2/90



tirer 2 bleues : (52)/(102)=10/45 ou 20/90

Posté par
kenavo27
re : 35. Diagramme en arbre 12-06-17 à 19:12

bonsoir carpediem

Citation :
Posté par
carpediem 12-06-17 à 14:54

salut

kenavo27 :faux car tirage sans remise ...

A noter que ce que je propose "rejoint" ....celle de flight
Citation :
Posté par
flight 12-06-17 à 18:25

si le tirages est simultané
facon de prendre 2 boules parmi 10 :   C(10,2)= 45 possibilités de tirage de 2 boules

P(avoir une seule couleur )= P(RR)+P(BB)+P(VV)= [C(2,2) + C(3,2)+ C(5,2)] / 45  =
(1 + 3 + 10 )/45 = 14/45

Posté par
malou Webmaster
re : 35. Diagramme en arbre 12-06-17 à 19:15

oui, mais le tirage n'est justement pas simultané
mais successif sans remise
ce n'est pas la même chose pour moi d'avoir 45 tirages ou d'en avoir 90
donc il n'y a pas 45 tirages possibles
le quotient (de la proba) sera OK, car les 2 "erreurs" sur les nombre de tirages se "compensent"

Posté par
kenavo27
re : 35. Diagramme en arbre 12-06-17 à 20:33

Bonne soirée malou qui se dévoue sans compter.

Posté par
TheMathHatter
re : 35. Diagramme en arbre 12-06-17 à 20:37

Je suis d'accord que si on fait une demo rigoureuse avec l'univers etc... alors on a plutot 90 resultats possibles que 45.

Cependant, ce que j'aime bien faire avec des eleves de 3e/2nde qui ont un peu de mal avec les arbres c'est des gros tableaux.

En faisant un tableau de 100 cases  (B1,B2,B3,B4,B5,V1,V2,V3,R1,R2 en lignes et en colonnes) et en enlevant les 10 cases de la diagonale on peut visualiser les 90 couples possibles et denombrer "facilement".

Ensuite la symetrie du tableau me permet de leur montrer que le tirage sans remise est "equivalent" au tirage simultane ce qui leur donne une autre facon de reflechir.

En fait le probleme se pose plus souvent dans l'autre sens avec des eleves qui ont du mal a trouver les "combinaisons"  et font un arbre alors que le tirage est simultane. Ce n'est pas tres rigoureux c'est vrai...



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1718 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !