Inscription / Connexion Nouveau Sujet
Niveau Maths sup
Partager :

analyse/ediff

Posté par melanie (invité) 18-04-02 à 10:13

on consdière équa diff : y' + 2xy =1 (E)
f est une solution de de E sur R

je dois montrer que :
f^(n+2) (x)=-2xf^(n+1) (x) -2(n+1)*f^(n) (x)

( avec lespuissances étant des dérivées ( par ex dérivée n+2 de f =
f^(n+2) )

je ne vois aps du tout commment procéder !
en admettant que f(x)=somme (k=0 à p ) de ak x^k +o (x^p )
ac k indice pr ak
on doit déduire de ce qu'on a montré précédemment que
a2k+1 = ((-4)^k . k!) / (2k+1)!

Je suis complètement largué ac ce type de question..si qq'un pouvait
m'aider ça me sauverai la vie... merci d'avance

Posté par Fragle (invité)re : analyse/ediff 18-04-02 à 11:41

Pour la première on te demande de montrer quelque chose pour tout
n --> RECURENCE (c'est un reflèxe à avoir)

P(n) : f^(n+2)(x)=......

n=0 c'est easy
On part de f'(x)+2xf(x)=1 et on dérive pour arriver à f''(x)=...

supp P vrai en n et montre en n+1
Tu pars de f^(n+2)=.....
pour calculer f^(n+3)=.... (tu dérives)

fin de la récurence

Pour la somme, tu pars de f(x)=som(ak x^x)
et tu dérives (terme à terme) pour voir comment ça se goupille
(comme ta somme est finie , som(u(x))'=som(u'(x)) )
(t'occupes pas du o(x^p) )
et tu recommence pour avoir f^(n)
tu dois avoir des coef du type k(k-1)(k-2)....(k-n) ak x^(k-n) (attention
à tes indices : k va de n à p)
ensuite tu remplaces dans ta relation de récurence vue au dessus et tu regroupe
les coef des x^k. Ca dois te donner une relation de récurence sur
ak, relation qui (en théorie )doit te permettre de conclure.

C'est un peu long et méticuleux (c'est pour ça que j'ai pas plus
détaillé, je l'ai pas fait) mais tu devrais t'en sortir.
Ce genre d'exos marche toujours comme ça.

Bon courage

Au fait c'est quel niveau ?



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1677 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !