Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

barycentre!!!

Posté par bouleyte (invité) 19-02-04 à 14:27

f(M)=MA²+3MB²
Déterminer et construire les lignes de niveau définies par f(M)=k pour k=48,
k=16, k=12 et k=8 (càd déterminer et construire l'ensemble E48
des points M du plan tels que f(M)=48,etc....)
je voudrais juste de l'aide pour commencer merci d'avance

Posté par bouleyte (invité)re : barycentre!!! 19-02-04 à 14:53

svp aidez moi juste une explication pour pouvoir continuer mon exo

Posté par bouleyte (invité)re : barycentre!!! 19-02-04 à 15:31

jcomprend pas

Posté par
watik
re : barycentre!!! 19-02-04 à 16:32

bonjour
permettez moi de vous répondre.

considérez le barycentre G de (A,1) et (B,3).

montrez alors que f(M)=4MG²+f(G)

avec f(G)=GA²+3GB²

ensuite considérez k tel que f(M)=k.

et montrez que MG²=(k-f(G))/4

donc si k-f(G)<0  alors MG²<0 pas de solution.

si k=f(G) alors MG²=0 et M=G une seule solution.

si k>f(G) alors k-f(G)>0 et MG=rc(k-f(G)/2  ; rc()=racine carré.

donc vous devez d'abord calculez f(G) en suite selon la valeur de
k vous étudiez le signe de k-f(G) et regardez dans quel cas parmis
les trois que j'ai cités vous vous trouvez.

voila

je vous ai répondu comme vous l'avez demandé.

je vous pris d'accépter mes remerciement.

bon courage.

Posté par bouleyte (invité)re : barycentre!!! 19-02-04 à 16:50

merci bcp

Posté par bouleyte (invité)re : barycentre!!! 19-02-04 à 16:55

en fait j'arrive pas à calculer f(G)

Posté par
watik
re : barycentre!!! 19-02-04 à 18:04

comment sont définis les point A et B?

Posté par BOULEYTE (invité)re : barycentre!!! 19-02-04 à 18:39

Soit A etB deux points du plan tels que AB=4
G barycentre des points (A,1) et (B,3)

Posté par
watik
re : barycentre!!! 19-02-04 à 19:18

rebonjour

AG+3BG=0 donc AG=-3BG

f(G)=AG²+3BG²=(-3BG)²+3BG²=12BG²

AG+3BG=0 donc

(AB+BG)+3BG=0

AB+4BG=0

donc BG=-1/4AB

donc BG²=1/16AB²

comme AB=4 donc AB²=16

donc BG²=1

f(G)=12BG²=12

f(G)=12

voila

vous n'avez plus qu'à conclure l'exo comme je vous ai indiqué.

bon courage.



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1488 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !