Inscription / Connexion Nouveau Sujet
Niveau CAP
Partager :

DM Trigonométrie

Posté par
Tomlaura
27-03-20 à 01:13

Bonsoir,

J'ai un DM à rendre j'ai fait l'exercice à part la question 3 car je ne sais pas comment faire j'ai un bug.

Merci de me dire di mes réponses sont justes.

Amicalement.

Voici l'énoncé:

DM Trigonométrie

L?appareil photo de Maxime dispose d?un angle de prise de vue maximum de 76°. Tous les objets qui seront en dehors de ce champ n?apparaîtront pas sur la photographie. Lors d?une escale à Pise, Maxime souhaite photographier la célèbre Tour de Pise. L?appareil photo est disposé au point A à 18 m du point C.
  

1) Cocher les bonnes réponses. Voici mes réponses:

Le segment [AC] est : le côté adjacent à l?angle A

Le segment [BC] est : le côté opposé à l?angle A

Le segment [AB] est : l?hypoténuse



2) En utilisant dans le triangle ABC, rectangle en C, la relation trigonométrique, calculé, en m, la longueur du côté BC. Arrondir le résultat au dixième.

On sait que le triangle ABC est rectangle en C, que le segment [AC] = 18 cm et que l?angle A ? = 76°.

En utilisant dans le triangle ABC, rectangle en C, la relation trigonométrique, je calcule en m, la longueur du côté BC et je l'arrondie au dixième.

Tan 76° = BC/CA
Tan 76° = BC/18
4 = BC/18
BC = 18 x 4
BC = 72 m
La longueur du segment [BC] est de 72 m.


3) Sachant que la tour de Pise mesure 54,5m de hauteur, Maxime pourra ? t ?il photographier intégralement la tour de l?endroit où elle se trouve ? Justifier la réponse.


?????????????????????????????



Posté par
Tomlaura
re : DM Trigonométrie 27-03-20 à 01:14

Désolé j'ai fait un buz avec la photo de mon triangle

* Modération > J'ai corrigé.
Toujours faire "Aperçu" avant de poster *

Posté par
Yzz
re : DM Trigonométrie 27-03-20 à 08:41

Salut,

Tu aurais dû garder la valeur de tan(76°) de ta calculatrice, car on te demande : "Arrondir le résultat au dixième."
Pour la 3 , je suppose que le point C est le pied de la tour, ce qui n'est pas dit ; et que cette tour est bien verticale, selon la droite (BC) , ce qui est plutôt amusant.
Bref, un texte un peu mal fichu ...

Posté par
Tilk_11 Moderateur
re : DM Trigonométrie 27-03-20 à 10:08

BonjourTomlaura,
indique ton niveau réel dans ton profil, la trigonométrie ne s'étudie pas en 5ème, du moins en France.

Tu peux t'aider, éventuellement du tableau suivant pour l'équivalence e niveau
DM Trigonométrie

Posté par
malou Webmaster
re : DM Trigonométrie 27-03-20 à 10:09

oui, Tilk_11, mais Tomlaura suit un CAP de mécanique en France, il a posté au mieux...comme il a dejà fait pour ses précédents sujets

Posté par
Tilk_11 Moderateur
re : DM Trigonométrie 27-03-20 à 10:13

Bonjour malou,
ce serait bien qu'il puisse l'indiquer dans son profil, est-ce que c'est prévu ?

Posté par
malou Webmaster
re : DM Trigonométrie 27-03-20 à 10:13

eh non...attends, je regarde ce que je peux faire
edit

Posté par
malou Webmaster
re : DM Trigonométrie 27-03-20 à 10:23

ça y est, je crois que c'est bon, il a son profil et j'ai ouvert des archives CAP, sans chapitres par contre, cela te va ?

Posté par
Tilk_11 Moderateur
re : DM Trigonométrie 27-03-20 à 10:39

c'est génial
merci malou

Posté par
Tomlaura
re : DM Trigonométrie 27-03-20 à 14:19

J'ai suivi vos conseil est-ce que ma réponse est juste svp?

2) En utilisant dans le triangle ABC, rectangle en C, la relation trigonométrique, calculé, en m, la longueur du côté BC. Arrondir le résultat au dixième.

On sait que le triangle ABC est rectangle en C, que le segment [AC] = 18 cm et que l'angle A  = 76°.

En utilisant dans le triangle ABC, rectangle en C, la relation trigonométrique, je calcule en m, la longueur du côté BC et je l'arrondie au dixième.

Tan 76° = BC/CA
Tan 76° = BC/18
0.68 = BC/18
BC = 18 x 0,68
BC = 12.24 m

La longueur du segment [BC] est de 12.2 m.


3) Sachant que la tour de Pise mesure 54,5 m de hauteur, Maxime pourra t'il photographier intégralement la tour de l'endroit où elle se trouve ? Justifier la réponse.


Maxime souhaite photographier la célèbre Tour de Pise. On sait que l'appareil photo est disposé au point A à 18 m du point C, que la tour de Pise mesure 54,5 m de hauteur et que la longueur du côté BC = 12,2 m.
  
Je n'arrive pas à répondre à la question, aidez mmoi svp. Merci

Posté par
malou Webmaster
re : DM Trigonométrie 27-03-20 à 14:37

la tan(76°) ne vaut pas 0,68
revois un peu ça
tu as du utiliser une calculatrice réglée en radians
remets la en degré

Posté par
Tomlaura
re : DM Trigonométrie 27-03-20 à 14:42

Voici mon nouveau calcul malou est-ce que c'est juste? et pour la question 3 je n'y arrive pas pouvez-vous m'aider svp.

Tan 76° = BC/CA
Tan 76° = BC/18
4,01 = BC/18
BC = 18 x 4,01
BC = 72,18 m

La longueur du segment [BC] est de 72,1 m.


3) Sachant que la tour de Pise mesure 54,5 m de hauteur, Maxime pourra t'il photographier intégralement la tour de l'endroit où elle se trouve ? Justifier la réponse.


Maxime souhaite photographier la célèbre Tour de Pise. On sait que l'appareil photo est disposé au point A à 18 m du point C, que la tour de Pise mesure 54,5 m de hauteur et que la longueur du côté BC = 72.1 m.
  

Posté par
malou Webmaster
re : DM Trigonométrie 27-03-20 à 15:02

La longueur du segment [BC] est de 72,2 m. (car derrière le 1 tu as un 8, donc tu dois arrondir à la valeur supérieure), OK ?

3)
eh bien 54,5 m est inférieure à 72,2 m...donc, va-t-il tout voir, eh bien oui
OK ?

Posté par
Tomlaura
re : DM Trigonométrie 27-03-20 à 15:16

Ok merci beaucoup

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !