Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Exercice fonction polynôme

Posté par
Leoniedeville
21-11-20 à 22:24

Bonsoir j'ai besoin de votre aide pour l'exercice suivant :
Soit f la fonction définie sur R par f(x) = x3-6x +2
Questions:
1)Montrer que l'équation f(x)= 0 possède au moins une solution dans l'intervalle [-10;10]
2) Montrer que f est strictement croissante sur l'intervalle [-3;-2].
3)Montrer que l'équation f(x) = 0 a une unique solution dans l'intervalle [-3;-2].
4)Donner un encadrement de à 0,1 près.

Mes réponses

1)f(x)= x3-6x+2
f'(x)= 3x2-6
*3x2-6 =0
Donc 3x2=6
x2=2
où x1=2 et x2= -2
On a donc 2 solutions possibles dans l'intervalle [-10;10]

2) Il est possible de déterminer le tableau de variations suivant: (image)
D'après le tableau de variations, f est strictement croissante sur l'intervalle [-3;-2]


3) ?(J'ai pas l'impression d'avoir utilisé les bonnes méthodes..)

4) ?

Merci pour votre aide

Exercice fonction polynôme

Posté par
LeHibou
re : Exercice fonction polynôme 21-11-20 à 22:39

Bonsoir,

1) est faux, tu as trouvé les solutions de l'équation f'(x) = 0 au lieu de celles de f(x) = 0
La méthode est plus simple sera :
- calculer f(-10)
- calculer f(10)
- conclure avec un théorème bien connu

Posté par
co11
re : Exercice fonction polynôme 21-11-20 à 23:14

Bonsoir,

d'accord avec toi LeHibou pour le 1).
Les calculs faits en 1) sont à utiliser en 2)

Posté par
Leoniedeville
re : Exercice fonction polynôme 22-11-20 à 10:30

Bonjour désolé de répondre que maintenant, je me suis renseigné sur le théorème des valeurs intermédiaires et j'ai vu qu'il ne peut être appliquer que si il respecte 3 facteurs:
-La continuité
-Le changement de signe
-La stricte monotonie

1) Vérifions si il est possible d'appliquer le théorème des valeurs intermédiaires :
*Pour le changement de signe : f(-10)= -10-3 -(6*(-10))+2 = -938
f(10)= 103-(6*10)+2 = 942
On a donc bien un changement de signe
*Pour la continuité : f(x)= x3-6x+2 est une fonction polynôme, donc elle est continue sur R. Continuité vérifié.
*Pour la stricte monotonie je suis bloqué :
f'(x)= 3x2-6
donc 3x2-6=0
Alors 3x2=6
Donc x2=2
où x1 =2 et x2=-2
Ici l'ensemble n'est pas strictement positif, il est donc pour moi impossible d'appliquer le théorème des valeurs intermédiaires vu que f n'est pas strictement monotone sur ]-10;10[ ???

Merci si vous pouvez m'aider

Posté par
LeHibou
re : Exercice fonction polynôme 22-11-20 à 10:54

Bonjour,

Le théorème des valeurs intermédiaires est à deux niveaux :
- pour l'existence d'une racine, il exige la continuité et le changement de signe, c'est bien le cas ici.
- la stricte monotonie garantit en plus l'unicité de la racine, effectivement ça n'est pas le cas ici, mais ça n'est pas non plus ce qui est demandé à cette étape du problème.

Posté par
Leoniedeville
re : Exercice fonction polynôme 22-11-20 à 12:32

Bonjour, merci pour votre aide.
Donc si je comprends bien grossièrement, on a un cas particulier du théorème des valeurs intermédiaires pour la racine où on exige seulement le changement de signe et la continuité de la fonction ?

1) Donc on a bien ici un changement de signe et une continuité de la fonction, on peut donc appliquer le théorème des valeurs intermédiaires.
D'après le théorème des valeurs intermédiaires, on en déduit que f(x)=0 admet au moins une solution sur ]-10;10[.

2)f(x) = x3-6x+2
Donc f'(x) = 3x2-6
Alors 3x2-6=0
3x2= 6
x2= 2
Alors on a x1=2 et x2=-2
On peut donc crée le tableau de variations suivant : (image)
D'après le tableau de variations, f est strictement croissant sur ]2;+[, donc on en déduit que f est strictement croissante sur l'intervalle [-3;-2]

3) Vérifions si il est possible d'appliquer le théorème des valeurs intermédiaires :
Changement de signe: f(-3)= (-3)3-6*(-3)+2=-7
f(-2)= (-2)3-6*(-2)+2=6
On a bien un changement de signe
Continuité:  f(x) = x3-6x+2 est une fonction polynôme, donc f est continue sur R, mais aussi alors sur [-3;-2]. La continuité est présente.
Stricte monotonie: f est strictement croissante sur [-3;-2] . La stricte monotonie est vérifiée.

On peut donc appliquer le théorème des valeurs intermédiaires : d'après le théorème des valeurs intermédiaires, on en déduit que f(x)=0 admet une unique solution sur [-3;-2]

4) Utilisons la calculatrice, on accède aux valeurs situées entre -3 et -2 avec un pas de 0,1. On en déduit -2,7<<-2,6


Merci beaucoup si vous corrigez une nouvelle fois mes erreurs

Exercice fonction polynôme

Posté par
LeHibou
re : Exercice fonction polynôme 22-11-20 à 12:59

Dans l'ensemble c'est juste, il y a juste une phrase qui me gêne :

Citation :
D'après le tableau de variations, f est strictement croissant sur ]2;+[, donc on en déduit que f est strictement croissante sur l'intervalle [-3;-2]

Ça ne veut rien dire, le comportement de f sur ]2,+[ ne te renseigne pas sur le comportement de f sur [-2 ; -2]...

Ef fait il faut une condition sur f' sur [-3 ; -2]  pour en déduire une information sur le comportement de f sur ce même intervalle.

Posté par
Leoniedeville
re : Exercice fonction polynôme 22-11-20 à 16:00

Bonjour, merci pour votre réponse. De plus je me suis trompé d'intervalle , j'ai mis alors la phrase suivante:
D'après le tableau de variations, f' est positif sur ]-;-2[ , en conséquence f' est également positif sur [-3;-2], alors on en déduit que f est strictement croissante sur l'intervalle [-3;-2]

Merci pour votre aide .

Posté par
LeHibou
re : Exercice fonction polynôme 22-11-20 à 17:27

C'est bon, tu peux enlever le "également" qui n'apporte rien...

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !