bonjour à tous pourriez vous me donner un petit coup d epouce svp?
j'essaie de decrire au mieux l'exercice:
Soient C et c' 2 cercles tangents exterieurements, de rayons respectifs R,R'
Une de leur tangentes commune D est tangente à C en A et tangente à C' en A'
On note d=AA'
là il y a une figure pour illustré celà
on a une droite horizontale sur lequel on voit 2 cercle C et C' tangents a cette droite, de grandeurs differents et tangents entre eux.
question1)
Montrer que d²=4RR'
là j'ai travaillé dans le triangle dont les trois sommets sont:
O (centre de C), O'(centre de C') et le projeté orthogonal de O' sur OA
J'ai utilisé pythagore et je suis facilement retombé sur le resultat escompté (et je vous cache pas ma joie parceque j'ai du mal a comprendre ce qu'on fait en cours...
question2)
Soit C'' un troisieme cercle tangent exterieurement à C et C' et tangent à D.Montrer que
1/VR'' = 1/Vr + 1/VR'
V= racine
Là je ne vois pas du tout comment faire pourriez vous m'indiquer quelques indices?merci d'avance de votre aide
Bonjour aurelio;
pour la question 1/ c'est bien phytagore
(voir image attachée)
pour la question 2/ je crois que la réponse donnée par l'énoncé suppose que le 3ième cercle se trouve dans la partie jaune de la figure (car il peut aussi se trouver dans la partie verte)
bref on fait comme veut l'énoncé:
soit le point de tangence de la droite et du cercle
,le mm raisonnement fait cette fois pour les cercles
et
donne que:
puis le mm pour les cercles
et
donne que:
d'où vu que on a :
soit en divisant cette égalité par
on trouve:
remarque:
si (C'') se trouve dans la partie verte je crois qu'on trouve plutot que:
Sauf erreur bien entendu
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :