Inscription / Connexion Nouveau Sujet

1 2 +


Niveau 3 *
Partager :

Joute n°160 : Décalage en 7

Posté par
godefroy_lehardi Posteur d'énigmes
28-08-14 à 14:06

Bonjour à tous,

Il s'agit de trouver un nombre entier (écrit en base 10) possédant la propriété suivante : pour le multiplier par 7, il suffit de déplacer son chiffre des unités tout à gauche sans toucher aux autres.

Autrement dit, si le nombre s'écrit abcde en base 10, abcde x 7 = eabcd

Question : Quel est le plus petit nombre entier strictement positif possédant cette curieuse caractéristique ?
Le nombre ne commence pas par zéro.

Joute n°160 : Décalage en 7

Posté par
Nofutur2
re : Joute n°160 : Décalage en 7 28-08-14 à 14:38

perduBonjour et encore merci godefroy,

Curieuse énigme que voici !!! D'apparence facile mais ... sans solution. Alors ???
Pourquoi tant insister sur l'écriture en base 10 pour abcde ??? Peut être que eabcd n'est pas en base 10..
Donc je me lance ..
Je propose 96052 qui multiplié par 7 donne 672364, nombre qui s'écrit en base 23.... 29605.
Donc 7* (abcde en base 10)=(eabcd en base 23).

Posté par
weierstrass
re : Joute n°160 : Décalage en 7 28-08-14 à 15:04

gagnéBonjour, mon algo pouvait encore tourner longtemps:
1 014 492 753 623 188 405 797

merci pour cette énigme, mais qui s'apparente plutôt à une recherche internet...  

Posté par
masab
re : Joute n°160 : Décalage en 7 28-08-14 à 15:49

gagnéBonjour godefroy,

Le plus petit nombre entier strictement positif possédant cette curieuse caractéristique est

1014492753623188405797

Merci pour cette énigme arithmétique.

Posté par
Raphi
re : Joute n°160 : Décalage en 7 28-08-14 à 16:29

gagnéSalut, je trouve un nombre vraiment grand :

1014492753623188405797

Posté par
Raphi
re : Joute n°160 : Décalage en 7 28-08-14 à 16:58

gagnéPour compléter, je trouve en fonction du choix du chiffre des unités qui peut être 7,8 ou 9 :

7 : 1014492753623188405797
8 : 1159420289855072463768
9 : 1304347826086956521739

à chaque fois des nombres de 22 chiffres ...

Posté par
panda_adnap
re : Joute n°160 : Décalage en 7 28-08-14 à 18:13

gagnémmm, pas si facile que ca.

Je n'ai rien de plus petit que 1014492753623188405797

alors je tente ma chance....

Posté par
LittleFox
re : Joute n°160 : Décalage en 7 28-08-14 à 18:18

gagnéLe plus petit nombre entier strictement positif possédant cette curieuse caractéristique est 1014492753623188405797.

En effet 1014492753623188405797 \times 7  = 7101449275362318840579

On cherche un nombre de la forme 10a+b tel que 7(10a+b)=b 10^l+a et 10a+b \ge 10^l (le nombre ne commence pas par 0).

Après simplification 69a = b(10^l-7) et 7\le b\le9.

Le plus petit l tel que  b(10^l-7) \equiv 0 \pmod{69} est 21, peu importe b.

En posant b=7 et l = 21, on obtient a = 101449275362318840579.

Posté par
derny
Joute n°160 : Décalage en 7 29-08-14 à 08:25

gagnéBonjour
1014492753623188405797 x 7 = 7101449275362318840579

Posté par
torio
re : Joute n°160 : Décalage en 7 29-08-14 à 09:38

gagnéLe nombre :  1014492753623188405797
7*nombre  : 7101449275362318840579




A+
Torio

Posté par
rschoon
re : Joute n°160 : Décalage en 7 29-08-14 à 11:00

gagnéBonjour à tous.

Ma réponse:1014492753623188405797

Merci pour l'énigme

Posté par
manitoba
re : Joute n°160 : Décalage en 7 29-08-14 à 14:36

gagnéBonjour,

Le nombre naturel cherché est  1014492753623188405797
[ 7*(10^21-7)/69*10+7 ].

1014492753623188405797*7=7101449275362318840579.

Merci pour la joute.

Posté par
pdiophante
joute n°160 29-08-14 à 19:43

gagnéBonjour

n = 1 014 492 753 623 188 405 797

Commentaire: voir O.E.I.S. A092697

Bien à vous

Posté par
NervaL928
re : Joute n°160 : Décalage en 7 29-08-14 à 19:47

perduD'après GéoGebra, 10\left(x-10^{\left\lfloor log_{10}(x)\right\rfloor}\left\lfloor\frac x{10^{\left\lfloor log_{10}(x)\right\rfloor}}\right\rfloor\right)+\left\lfloor\frac x{10^{log_{10}(x)}}\right\rfloor=7x n'a pas de solution (à part 0 bien sûr)... J'ai aussi fait tourner un algo jusqu'à 207 000, sans résultat...
Ma réponse : impossible

Posté par
geo3
re : Joute n°160 : Décalage en 7 30-08-14 à 08:29

gagnéBonjour
Ce serait
1014492753623188405797.
car
1014492753623188405797*7=7101449275362318840579.
A+

Posté par
dpi
re : Joute n°160 : Décalage en 7 30-08-14 à 08:31

perduBonjour,

On peut chercher longtemps ou prouver l'impossibilité...

1/quels sont les débuts compatibles avec x7 pour rester
dans une même tranche de chiffre?
on arrive vite à 10 11 12 13.
2/quels sont les chiffres de fin possibles:
10-->7 11et12-->8 13-->9
3/l'avant dernier chiffre devra résulter de ces derniers
7->9 8->6 et 9->3
si on prend abcde comme  base avec eabcd =7 x abcde
et 13 comme début on obtient:

13cd9 x 7 =913cd -->d=3
13c39 x 7 =913c3--->c=7
13739 x 7 =91373 ? or cela fait 96173

idem pour tous les exemples et toutes les tranches .

Ma réponse est donc IMPOSSIBLE.

Pour mémoire,
13 043 478 260 869-->91 304 347 826 086
Et multiplié par 7 ->91 304 347 826 083 dommage

Posté par
pi-phi2
avec l'inverse du nombre 23 30-08-14 à 10:55

perdusalut.

en récupérant le cycle des 22 chiffres de la partie décimale de \frac{1}{23}

on obtiens le nombre : 1304347826086956521739

                                                            à plus.

Posté par
LEGMATH
re : Joute n°160 : Décalage en 7 31-08-14 à 21:52

gagnéBonsoir godefroy_lehardi

1014492753623188405797 *7 =
7101449275362318840579

Merci pour ce joute.


        

Posté par
littleguy
re : Joute n°160 : Décalage en 7 01-09-14 à 00:43

gagnéBonjour,

Je propose 1014492753623188405797

Posté par
jugo
re : Joute n°160 : Décalage en 7 02-09-14 à 09:37

gagnéBonjour,

J'ai trouvé un plus petit nombre plutôt grand : 1 014 492 753 623 188 405 797.

J'ai fait comme ça :
En gardant la notation n = abc...de, on veut abc...de x 7 = eabc...d.
Pour que 7n n'ait pas plus de chiffres que n, il faut abc < 1000/7 = 143 (donc a=1, b≤4).
7n commence alors par e = 7, 8 ou 9.

Ensuite, si n finit par e=7, alors 7n finit par d=9, donc n finit par 97.
Si n finit par 97, 7n finit par 79, donc n finit par 797, etc.
On fait en fait une simple multiplication par 7, mais sans en connaître la fin :
Joute n°160 : Décalage en 7

On continue comme ça jusqu'à tomber sur n commençant par 142 ou moins, et on trouve :
. pour e=7, n = 1 014 492 753 623 188 405 797
. pour e=8, n = 1 159 420 289 855 072 463 768
. pour e=9, n = 1 304 347 826 086 956 521 739

Le plus petit est 1 014 492 753 623 188 405 797.

Posté par
cercus
re : Joute n°160 : Décalage en 7 02-09-14 à 21:46

perdusalut, la réponse est 91  car si on déplace le chiffre des unités, on obtient 19.

Posté par
NervaL928
re : Joute n°160 : Décalage en 7 03-09-14 à 15:28

perduOk, je chercherai pas à justifier que j'ai pigé m'être planté, mais je le dis : je me suis planté grave !
Ce que je faisais, c'est transformer ABCDE en BCDEA... Rien à voir, donc je puerai la poiscaille !

Posté par
seb_dji
re : Joute n°160 : Décalage en 7 04-09-14 à 16:13

perdule nombre 10X+a (de longueur k) doit vérifier:
69*X=(10^k-7)*a
ce qui fonctionne pour la première fois pour:
k=21
a=7
X=(10^21-7)*7/69 = 1,01449275362319... 10^21

Posté par
plumemeteore
re : Joute n°160 : Décalage en 7 05-09-14 à 10:40

gagnéBonjour Godefroy.

1.014.492.753.623.188.405.797

Soient y le dernier chiffre, x le nombre formé par les autres et p le nombre de chiffres.
(10x+y)*7 = y*10^(p-1) + x
69x = y*[10^(p-1)-7]
10^n  est 7 modulo 69 quand n = 21
69x = y* 999.999.999.999.999.999.993
x = 14.492.753.623.188.405.797 y, avec y égal à au moins 7

Posté par
spelecameleon
réponse joute n°160 05-09-14 à 15:14

gagnéBonjour,

je propose la réponse suivante :

1014492753623188405797

Merci pour cette énigme, qui démontre la supériorité de l'homme sur la machine...

Cordialement

Posté par
franz
re : Joute n°160 : Décalage en 7 10-09-14 à 00:30

gagnéLe plus petit nombre répondant à la question est :
\red 1\,014\,492\,753\,623\,188\,405\,797

Pour le démontrer on peut écrire que si A=\sum_{i=0}^n a_i\,10^i est le nombre cherché, on a :
7A = \sum_{i=0}^n 7a_i\,10^i = \sum_{i=1}^n a_i\,10^{i-1}+a_0 10^n

donc
a_0 (10^n-1) = \sum_{i=1}^n a_i\,10^{i-1}\times(70-1)= 3\times 23\sum_{i=1}^n a_i\,10^{i-1}

Comme a_0\in[[1,9]], 23 ne divise pas a_0 et par le théorème de Gauss, 23 divise 10^n-1
Le petit théorème de Fermat nous dit que comme 23 est premier et que 10 n'est pas un multiple de 23, 23 divise 10^{22}-1
On vérifie que 22 est le plus petit entier n tel que 23 divise 10^n-1.
10^n-1 est constitué uniquement de 9 et par conséquent est aussi un multiple de 3 donc de 69.

En définitive \sum_{i=1}^n a_i\,10^{i-1} = a_0\left(\frac{10^{22}-1}{69}\right)=144927536231884057971\times a_0

Ce premier affreux nombre (correspondant à a_0=1) ne convient pas avec la contrainte "ne commence pas par 0" car il n'a que 21 chiffres. Son premier multiple supérieur à  10^{22} correspond au cas a_0=7 et donc à la solution affichée.

Posté par
RickyDadj
re : Joute n°160 : Décalage en 7 15-09-14 à 18:21

perduSalut,godefroy! Salut, tous!
Il n'existe aucun entier possédant cette curieuse caractéristique!
Enfin, à erreurs et confusions près (ce qui ne serait pas surprenant vu tous les entiers que j'ai dû manipuler)...

Posté par
RickyDadj
re : Joute n°160 : Décalage en 7 15-09-14 à 18:32

perduCher godefroy, pour la pénible mais délictueuse gymnastique neuronale qui nous est imposée sur cette île, je ne cesserai jamais de la remercier... mais de la maudire presque autant!

Posté par
ksad
re : Joute n°160 : Décalage en 7 16-09-14 à 14:06

gagnébonjour et merci pour ce joli problème,

voici la solution que je propose :
1014492753623188405797 x 7 = 7101449275362318840579

-----------------------
Pour commencer, on écrit le nombre recherché sous la forme 10*A + B, où B est le chiffre des unités, et A comporte k chiffres.
Nous écrivons les conditions suivantes:
10^{k-1} \leq A < 10^k, \qquad 1 \leq B < 10

Notons que B ne peut pas être 0, mais que A commence forcément par 1, sans quoi le "multiple par 7" compterait forcément un chiffre de plus que le chiffre initial. B, comme premier chiffre du multiple, ne peut alors valoir que 7, 8 ou 9.

On veut trouver le plus petit A tel que :
(10 \times A + B) \times 7 = 10^k B + A

Après ré-agencement nous donne:

69 A = (10^k - 7)B

Notant que 10^k-7 est toujours divisible par 3, cela donne:

23 A = \frac{1}{3}(10^k - 7)B

Il faut donc trouver le plus petit k tel que (10^k-7) soit multiple de 23 (B ne pouvant pas l'être puisque < 10). Il se trouve que la plus petite valeur possible pour k est 21. Il ne reste alors plus qu'à tester la plus petite des 3 valeurs admissibles pour B (7, 8 ou 9). On trouve bien la plus petite solution pour B=7. Avec k=21, cela fait donc A=101449275362318840579.
Merci pour la joute, et à bientôt

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°160 : Décalage en 7 18-09-14 à 16:21

Clôture de l'énigme :

J'ai appris par la suite que les nombres possédant cette caractéristique s'appellent les nombres parasites.

Bravo en particulier à ceux qui ont bien expliqué leur démarche !

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°160 : Décalage en 7 18-09-14 à 16:26

Félicitations à masab pour sa 3ème victoire !
ça s'est joué à peu de choses

Bravo également à derny, rschoon, littleguy, Raphi, torio, Littlefox, weierstrass et manitoba pour leur sans-faute.

Posté par
seb_dji
re : Joute n°160 : Décalage en 7 18-09-14 à 16:56

perdupourquoi ai je un poisson? j'ai répondu juste!
je suis au bureau et sur mon excel, je ne pouvais pas afficher plus de 10 chiffres...

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°160 : Décalage en 7 18-09-14 à 17:05

Bonjour seb_dji,

Je suis désolé mais 1,01449275362319... 10^21 n'est pas la bonne réponse.

C'est vrai que excel a des limitations mais, sur une feuille A4, on peut aligner plus de 10 chiffres.

Posté par
littleguy
re : Joute n°160 : Décalage en 7 18-09-14 à 18:15

gagné

Citation :
les nombres possédant cette caractéristique s'appellent les nombres parasites.
Quand je pense que je me suis farci la recherce des nombres de la forme 3333....31 divisibles par 23 !

Posté par
dpi
re : Joute n°160 : Décalage en 7 18-09-14 à 19:56

perduBonjour,

Chapeau bas pour tous ceux qui ont trouvé, pour ma part
j'ai abandonné en vérifiant l'impossibilité pour les tranches
jusqu 'à 10^13 j'étais loin de 21

Posté par
weierstrass
re : Joute n°160 : Décalage en 7 18-09-14 à 20:27

gagnéJe félicite aussi ceux qui ont trouvé sans recherche internet...

(J'ai honte de moi)

Posté par
dpi
re : Joute n°160 : Décalage en 7 19-09-14 à 10:14

perduBonjour,

Merci Weierstrass?
La prochaine fois j'irais voir sur Wikipédia
si par hasard il n'y aurait pas la réponse
dès les premières lignes

Posté par
masab
re : Joute n°160 : Décalage en 7 19-09-14 à 10:52

gagnéQue fallait-il taper sur google pour trouver la réponse ?

Posté par
jugo
re : Joute n°160 : Décalage en 7 19-09-14 à 11:05

gagnéDécalages en 1 à 9 :
(58 chiffres pour le cas 6, l'énigme aurait pu être plus vache ...)

Joute n°160 : Décalage en 7

Posté par
littleguy
re : Joute n°160 : Décalage en 7 19-09-14 à 11:51

gagné> masab

Taper "nombres parasites" et la première proposition conduit à ceci :

Posté par
masab
re : Joute n°160 : Décalage en 7 19-09-14 à 12:01

gagnéMa question était :
Que fallait-il taper sur google pour trouver la réponse ?

"fallait-il" est à l'imparfait...
Or à la lecture de l'énigme, on ne savait pas sauf exception que les nombres en question s'appelaient des nombres parasites...

Posté par
littleguy
re : Joute n°160 : Décalage en 7 19-09-14 à 13:08

gagnéD'accord. Du coup je n'en sais rien, je vais chercher...

Posté par
castoriginal
re : Joute n°160 : Décalage en 7 19-09-14 à 14:21

Bonjour,

>>>Weierstrass  et Masab ont raison !

Il ne s'agit plus de réussites mathématiques.

On gagne soit:

1) parce qu'on programme bien

2) parce ce qu'on est un bon fonctionnaire archiviste d'internet.

La réputation du meilleur gagnant au concours d'énigmes en prend un sacré coup

Tout est remis en question !

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°160 : Décalage en 7 19-09-14 à 14:44

Bonjour à tous,

Je peux comprendre la déception de ceux qui n'ont pas trouvé mais il faut quand même remettre les choses dans leur contexte.

1. Lorsque je m'inspire d'une énigme existante, j'essaye de vérifier si on ne la trouve pas trop facilement sur Internet. J'ai renoncé à plusieurs joutes pour cette raison. Maintenant, si d'autres trouvent de meilleurs mots-clé que moi...

2. Les résolutions purement géométriques ou arithmétiques sont évidemment plus élégantes que la "force brute". Mais il faut tenir compte de l'évolution des technologies.
Je trouve parfois des énoncés géométriques très intéressants mais, avec geogebra (ou tout autre logiciel de géométrie dynamique), ça devient un jeu d'enfant et on perd tout le sel du jeu.

3. Dans le cas présent, celui qui connaissait l'existence des nombres parasites était évidemment avantagé. Mais, s'il les connait et pas vous, c'est qu'il a passé un peu plus de temps à construire sa culture mathématique, non ?
Si vous participez à la même course que Usain Bolt, c'est normal qu'il vous mette plusieurs mètres dans la vue. N'empêche que vous aurez eu le plaisir de participer.

Et puis, voici une énigme qui pouvait très bien se résoudre avec du papier, un crayon et de la réflexion. A l'ancienne, quoi !

Posté par
RickyDadj
re : Joute n°160 : Décalage en 7 19-09-14 à 15:41

perduJe confirme!
D'ailleurs, c'est ce que j'ai fait. Papier, crayon, patience,... (autant de raisons de maudire l'île, quoi) Par malheur, une petite erreur m'a fait remplacer le 8 vers la fin par un 0, et après on arrivait à la conclusion qu'un tel nombre n'existe pas. Mais j'ai vérifié mes calculs depuis (trop tard), et j'ai bien trouvé.
Et puis, il y a déjà eu des énigmes pour lesquelles les mathématiques pures étaient moins utiles que la culture (comme celle avec les mathématiciens à reconnaitre)!

Posté par
RickyDadj
re : Joute n°160 : Décalage en 7 19-09-14 à 15:42

perduSoit dit en passant, masab, toutes mes félicitations!

Posté par
masab
re : Joute n°160 : Décalage en 7 19-09-14 à 15:56

gagnéPersonnellement j'ai résolu cette 4ème énigme à la main !
En programmant avec la force brute, on ne pouvait jamais atteindre ce nombre de 22 chiffres...

Posté par
weierstrass
re : Joute n°160 : Décalage en 7 19-09-14 à 16:03

gagnéJ'ai eu un coup de bol, j'avais cherché du côté des nombres derviches, qui se rapprochaient assez du problème, mais ils commençaient par 0.
Mais en bas, un lien conduisait vers les nombres parasites...
Par curiosité, et en parcourant les pages, j'ai fini par y aller.
Néanmoins , j'ai un peu de regrets en voyant que l'on pouvait résoudre à la main!

Posté par
dpi
re : Joute n°160 : Décalage en 7 19-09-14 à 18:47

perduBonsoir,

Mon coup de chapeau s'adressait à ceux qui
avaient trouvé "à la main" (et au cerveau)
Mais les heureux lecteurs de Wikipédia ont aussi
fait montre de "réalisme".
Les informaticiens n'ont qu'à laisser "tourner"..

J'ai stoppé à 1013
J'aurais dû extrapoler ma solution en incrémentant  de 1 à9
en retenant le plus proche ,et en 8 coup seulement j'y étais...

Posté par
derny
Joute n°160 : Décalage en 7 23-09-14 à 09:31

gagnéBonjour
Pas d'accord avec Castoriginal.
A la main j'ai trouvé assez vite les 3 nombres donnés par Raphi par une méthode proche de celle indiquée par LittleFox.

1 2 +


Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 97:22:07.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !