Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

les limites

Posté par fuse (invité) 17-02-05 à 14:37

svp est ce que vous pouvez m'aider et merci d'avance.
exercice:
f(x)=(x[/sup]2-2bx+1)/(2x[sup]2+ax-a-2) lorse que x est sup a 1.
f(x)=(-2x[/sup]2+3x+3)/(x[sup]2+1) lorse que x est inf a 1.
f(1)=(2+c)/3.
determinez a,b,c pour que f soit continue dans 1

Posté par fuse (invité)les limites 17-02-05 à 14:44

svp aidez moi c un  devoir que je dois rendre

Posté par fuse (invité)aidez moi 18-02-05 à 14:49

aidez moi svp

Posté par
takhasys
re : les limites 20-02-05 à 18:15

Bonjour
j'y suis presque mais pas tout a fait, l'ènoncé est-il exact ?

Enfin, voici la démarche
f(x)=(-2x²+3x+3)/(x²+1) lorsque x=1 f(1)=2
f(1)=(2+c)/3 = 2 donc c=4

pour l'équation
f(x)=(x²-2bx+1)/x²-2bx+1

pour x=1 f(1)=0/0 indéterminé
on écrit x²-2bx+1 = (x-1)(x+1-2b) + 2 - 2b
2x2+ax-a-2=(x-1)(2x+2+a)
il faut donc 2-2b=0 soit b=1
alors
f(x)=(x-1)/(2x+2+a)
alords avec a=-4 f(1)=1/2  
et non 2 ???? là est le hic
Bon Courage



Posté par fuse (invité)les limites 20-02-05 à 19:51

merci



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1681 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !