Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

limite

Posté par
Botrez
27-04-11 à 10:36

f est une fonction définie sur IR par f(x)=2x^3-3x^2-12x+10
C est la courbe représentaive dans un repère
J'ai réussi à trouver les limites,à trouver ses extremums locaux -1 et 2 mais j'ai un problème au sujet d'écrire une équation de latengante T a la courbe C au pointd'abcisse 1/2 puis de vérifier que tout réel x, f(x)-(-13,5x+10,25)=2(x-0,5)^3
en déduire la position de C par rapport à T
et tracer C et TConstruire les tengantes horizontales.
Voilà merci d'avance pour votre aider

Posté par
cauchy77
re : limite 27-04-11 à 10:45

Bonjour,
pour toute question relative à la tangente, tu as juste à appliquer la formule :
la tangente à la courbe C en I d'abscisse a est : y=f'(a)(x-a)+f(a)
Tu as donc juste un calcul de dérivée à effectuer, puis calculer sa valeur en a et chercher f(a) puis effectuer les calculs.
Pour la position relative de la tangente par rapport à la courbe, tu dois étudier le signe de f-y, où f est la fonction et y l'équation de la tangente.

Bon courage.

Posté par
Botrez
re 27-04-11 à 11:02

Bonjour et merci de votre réponse
lorsque vous parlez de dérivée vous voulez dire f(a+h)-f(a) le tout sur hest égal à f'(a) avec a+h = 1/2 ou je suis à côté ce qui est possible sachant que je patauge
Merci d'avance

Posté par
Botrez
ree 27-04-11 à 11:07

Je me suis trompée j'ai calculée f'(x) en trouvant 13,5 suis je sur la bonne voie ?
Merci d'avance

Posté par
cauchy77
re : limite 27-04-11 à 11:48

re,
si f(x)=2x3-3x²-12x+10 alors f'(x)=6x²-6x-12 et f'(0.5)=...?

Posté par
Botrez
ree 27-04-11 à 11:55

f'(0,5)=-13,5 ?

Posté par
cauchy77
re : limite 27-04-11 à 12:02

là je suis OK, car il manquait le signe - !!
maintenant il ne te reste plus qu'à trouver la position relative de cette tangente par rapport à la courbe, regarde mes consignes plus haut.

Posté par
Botrez
ree 27-04-11 à 12:49

Désolé de vous redéranger à nouveau mais j'ai un problème pour calculer la dérivée, je ne comrends âs même si vos explications sont très claires
Merci d'avance

Posté par
cauchy77
re : limite 27-04-11 à 12:57

que veux-tu faire avec la dérivée???
tu as déjà calculé ce qu'il te fallait!!

Posté par
Botrez
re 27-04-11 à 12:58

Excusez moi c'est que je suis perdue dans cette exercice

Posté par
Botrez
ree 27-04-11 à 18:51

Bonsoir, quelqu'un peut m'expliquer svp car je patauge franchement malgré les explications
Merci d'avance



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1719 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !