Inscription / Connexion Nouveau Sujet
Niveau autre
Partager :

Pour Ghostux

Posté par
otto
25-01-04 à 18:18

Ghostux, plutot que de t'envoyer un mail, je préfère poster
ici, ca permettra aux autres de participer éventuellement.

Voilà, on a 2vecteurs non colinéaires (très important) dans R^3.
On cherche le plan P défini par ces 2vecteurs.

Mettons par exemple que ces vecteurs soient:
u=(1,2,3) et v=(1,1,1)

Le plan P est l'ensemble des vecteurs du type
au+bv tu es d'accord.

Donc w=(w,y,z) est un vecteur de  P si et seulement s'il existe un
couple de réel (a,b) tel que
w=au+bv
(donc si et seulement si la famille (u,v,w) est liée)
donc si et seulement si
det(u,v,w)=0

ici j'ai dit que l'on avait par exemple
u=(1,2,3) v=(1,1,1) w=(w,y,z)

|1 1 x|
|2 1 y|
|3 1 z|

je vais développer mon déterminant par rapport à la dernière colonne
et je trouve
det(u,v,w)=x*d1-y*d2+z*d3 avec

d1=
|2 1|
|3 1|

d2=
|1 1|
|3 1|

d3=
|1 1|
|2 1|

donc d1=2-3=-1
d2=1-3=-2
d3=1-2=-1

donc w est dans P si et seulement si
-x+2y-z=0
si et seulement si

x-2y+z=0

et donc une équation du plan P est
x-2y+z=0

Voilà, c'était pas si compliqué et assez amusant.

Posté par
otto
re : Pour Ghostux 25-01-04 à 18:20

Pour déterminer un plan affine on détermine ce plan vectoriel, et
ensuite en utilisant un point que l'on connait on trouve facilement
la constante.

Posté par Ghostux (invité)re : Pour Ghostux 25-01-04 à 19:02

   Merci otto , en fait je t'avais demandé de m'ecrire pour
pas que ca fasse chat ici. Decidement, c'est la methode décrite
dans le Quid 98() ,ca y est je m'en souviens.  Mais on ne
la voit jamais au lycée celle là.
  @ bientot alors, dans les couloirs de cette ile

Ghostux

Posté par
otto
re : Pour Ghostux 25-01-04 à 19:11

Bein on peut s'écrire ici pour s'expliquer des méthodes,
c'est le but d'un forum, ca fait pas tchat du tout

Sinon peut etre que le Quid fait comme ca, mais ma 1e idée était de trouver
le supplémentaire orthogonale de P et ainsi de revenir par le théorème
de la base incomplete sur P, mais ca c'est clair que ca ne se
voit pas au lycée, mais si on me l'avais demandé j'aurai
fait l'une de ses méthode, celle du déterminant étant selon
moi la plus jolie, surtout que je n'aime pas le systèmes, et
écrire le déterminant nous donne directement l'équation de ce
plan, je trouve ca .... whaoo.
Trop beau

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !