Inscription / Connexion Nouveau Sujet
Niveau troisième
Partager :

probabilité

Posté par
sabdu59
31-05-09 à 21:59

bonjour, pourriez vous m'aider à résoudre cet exercice s'il vous plaît, voici l'énoncé :
Une urne contient 5 boules indiscernables au toucher : deux noirs "N" et trois blanches "B". On dispose également de deux sacs contenant des jetons : l'un est noir et contient 1 jeton noir et 3 jetons blancs, l'autre est blanc et contient 2 jetons noirs et 2 jetons blancs. On extrait 1 boule de l'urne, puis on tire un jeton dans le sac qui est de la même couleur que la boule tirée.
1) Combien y a-t-il d'issues possibles ? les expliciter.
2) A l'aide d'un arbre pondéré, déterminer la probabilité de chacune de ces issues.
3) Déterminer la probabilité de l'événement A : "la boule et le jeton extraits sont de la même couleur".

Posté par
Labo
re : probabilité 31-05-09 à 22:28

Bonsoir,
4 issues possibles
1boule noire suivie 1 jeton noir ou d'un jeton blanc
1 boule blanche suivie 1 jeton noir ou d'un jeton blanc
ci joint arbre ,tu continues...

probabilité

Edit jamo : Image recadrée pour éliminer des zones inutiles et gagner de la place.

Posté par
laurha
re : probabilité 31-05-09 à 22:30

bonsoir,

1) Combien y a-t-il d'issues possibles ? les expliciter.

Si la première boule tirée est noire, le jeton tiré peut-être noir ou blanc, soit deux résultats possibles (N, n) et (N, b)

Si la première boule tirée est blanche, le jeton tiré peut-être noir ou blanc, soit deux résultats possibles (B, r) et (B, b)

donc il y a 4 issues possibles

B boule blanche
b jeton blanc

N boule noire
n jeton noir

Posté par
laurha
re : probabilité 01-06-09 à 10:59

Re,

Je te mets le schéma de l'arbre

probabilité

Posté par
laurha
re : probabilité 01-06-09 à 11:07

A partir du schéma les issues et les probabilités sont

issue 1ère ligne ( N, n )

probabilité : p (N,n) = 2/5 x 1/4 = 2/20 = 1/10


issue 2e ligne ( N , b )

probabilité : p (N,b) = 2/5 x 3/4 = 6/20 = 3/10


issue 3e ligne ( B, n )

probabilité : p (B,n) = 3/5 x 2/4 = 6/20 = 3/10


issue 4e ligne ( B, b )

probabilité : p (B,b) = 3/5 x 2/4 = 6/20 = 3/10

Posté par
laurha
re : probabilité 01-06-09 à 11:13

3) Déterminer la probabilité de l'événement A : "la boule et le jeton extraits sont de la même couleur".

L'événement A est constitué de deux événements (N,n) et (B,b)

probabilité (A) = p (N,n) + p (B,b)

p(A) = 1/10 + 3/10 = 4/10 = 2/5

La probabilité de l'événement A est 2/5

A+

Posté par
Mageia
probabilité 01-06-09 à 11:19

Bonjour, je n'arrive pas a résoudre cet exercice pourriez vous m'aider s'il vous plaît, merci d'avance ! Voici l'énoncé:

On lance un dé équilibré à dix faces (numérotées de 1 à 10). Si on obtient un nombre premier alors on gagne 3€, sinon on perd 2€. On relance le dé une deuxième puis une troisième fois.

a. Détermine la liste des gains et des pertes possibles pour ce jeu puis calcule la probabilité associée à chaque gain et à chaque perte.



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1718 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !