Inscription / Connexion Nouveau Sujet
Niveau maths sup
Partager :

racine rationnelle

Posté par
Yosh2
21-02-21 à 13:13

bonjour
on me demande de montrer que P(X)= 2X3+X2-X+3 admet une racine rationnelle puis la calculer, en cherchant des Exos sur internet j'ai trouve la propriete qui que si P est a coeff dans Z et qu'il admet une racine rationnelle p/q avec p premiers avec q alors p divise a0 et q divise an, j'ai donc suppose que  P admettait une racine dans Q et jai trouve qu'elle devait etre une valeur dans un ensemble j'ai teste toutes les valeurs et j'ai trouve que -3/2 est racine , , en effet cette proprite ne figurant pas dans mon cours , je n'ai pu resoudre cet exo que par chance alors je me suis demande s'il n y avait une autre methode?
merci a vous

Posté par
GBZM
re : racine rationnelle 21-02-21 à 13:52

Bonjour,

C'est le procédé classique pour circonscrire les rationnels qui peuvent être racine d'un polynôme à coefficients entiers. Comme ça donne un nombre fini de possibilités, on est sûr de déterminer en temps fini toutes les racines rationnelles.
D'autres méthodes pour décider l'existence d'une racine rationnelle ? Je ne vois pas.

Posté par
carpediem
re : racine rationnelle 21-02-21 à 14:21

salut

Yosh2 @ 21-02-2021 à 13:13

en effet cette propriété ne figurant pas dans mon cours , je n'ai pu résoudre cet exo que par chance alors je me suis demande s'il n y avait une autre méthode?
non ce n'est pas de la chance c'est un travail méthodique par l'application d'un théorème qui conduit à une réponse certaine ... comme le dit GBZM

et ce que tu aies ou pas cet outil dans ta boite à outil (le cours) ...


il existe bien une autre méthode qui elle repose sur la chance ou l'expérience : ça s'appelle le feeling !!

mais elle est plus aléatoire ...

Posté par
Yosh2
re : racine rationnelle 21-02-21 à 17:34

bonjour
d'accord ,puisque qu'il s'agit de la methode classique pour montrer qu'un polynome a coeff entiers possede une racine rationnelle, je ferais bien de la noter quelquepart.
merci a vous deux

Posté par
carpediem
re : racine rationnelle 21-02-21 à 17:39

de rien

Posté par
Sylvieg Moderateur
re : racine rationnelle 21-02-21 à 17:59

Bonjour,
Je signale une propriété analogue pour trouver une racine entière k :
Elle divise a0.
Toujours dans la situation de coefficients entiers.

La retrouver quand on en a besoin est facile.
Un exemple :
x4 - 3x3 - 33x2 + 38x - 21 = 0.
Si cette équation a une solutions \; k \; dans , elle vérifie
k4 - 3k3 - 33k2 + 38k - 21 = 0.
D'où k(x3 - 3k2 - 33k + 38) = 21.
k divise 21.

Ce n'est guère plus compliqué avec un rationnel \; p/q \; au lieu de \; k .
Plutôt que de retenir la propriété, essaye de bien comprendre d'où elle vient.

Posté par
Yosh2
re : racine rationnelle 22-02-21 à 11:29

bonjour
la démonstration consistait a tout mettre au même dénominateur, puis des factorisations permettait a l'aide du th de gauss de montrer que q|an et p|a0 , en effet en le faisant avec des exemples concrets c'est plus visible,la propriété pour les entiers semble le cas particulier de cette dernière ou q = 1, je tacherais de  refaire cette démonstration rapidement au brouillon , c'est sur qu'ainsi j'éviterais les confusions entre qui ,de p et q divise a0 ou an
merci a vous



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1455 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !