Inscription / Connexion Nouveau Sujet
Niveau algorithmique
Partager :

Suite de Syracuse

Posté par
Phenix3477
08-10-20 à 12:42

Bonjour , après quelque mois de recherche je pense avoir démontrée que la suite de Syracuse  marche avec tout les nombre aucun chiffre de départ ne mènera pas a une suite infinie de 4-2-1 . Quelqu'un peut vérifier ce que j'avance ?

Posté par
Phenix3477
re : Suite de Syracuse 08-10-20 à 12:46

Re-Bonjour alors la suite de Syracuse marche avec tout les nombre car.

Le x3+1 si on le fait sur n'importe quel chiffre pair OBLIGATOIREMENT il mènera a un chiffre impaire

et Si le x3+1 est appliquée sur un chiffre impaire OBLIGATOIREMENT il mènera a un chiffre pair car

le +1 fait changer le pair et le impaire car vue que tout les chiffre on une meme suite

pair-impair-pair-impaire .


Donc Forcément si on l'applique sur un chiffre impaire il deviendra impaire et ensuite on pourra le diviser par 2 donc on obtiendra toujours une suite de 4-2-1 avec n'importe quel chiffre .

Posté par
Phenix3477
re : Suite de Syracuse 08-10-20 à 12:48

Donc Forcément si on l'applique sur un chiffre impaire il deviendra PAIRE  et ensuite on pourra le diviser par 2  et continuer la suite des calcule donc on obtiendra toujours une suite de 4-2-1 avec n'importe quel chiffre .

Posté par
LeHibou
re : Suite de Syracuse 08-10-20 à 13:49

Citation :
Le x3+1 si on le fait sur n'importe quel chiffre pair OBLIGATOIREMENT il mènera a un chiffre impaire .

L'énoncé du problème dit que s'il est pair on divise par 2.

Citation :
et ensuite on pourra le diviser par 2  et continuer la suite des calcule donc on obtiendra toujours une suite de 4-2-1 avec n'importe quel chiffre .

Pourquoi ?

Posté par
Phenix3477
re : Suite de Syracuse 08-10-20 à 16:59

Car on va diviser par deux jusqu'a 4-2-1 car x3+1 mène a un chiffre pair obligatoirement .Donc qui dit chiffre pair dit  divisable par deux donc on va refaire ces calcule jusqu'a le 4-2-1 Infinie !

Posté par
Phenix3477
re : Suite de Syracuse 08-10-20 à 17:06

Si le x3+1 est appliquée sur un chiffre impaire OBLIGATOIREMENT il mènera a un chiffre pair car

le +1 fait changer le pair et le impaire car vue que tout les chiffre on une meme suite

pair-impair-pair-impaire .

Posté par
Phenix3477
re : Suite de Syracuse 08-10-20 à 17:08

Et la suite de Syracuse j'ai trouvée que elle peut exister de plusieurs façon tout simplement faire +1 si il est impaire et et * 2 si il est pair et tu aura une suite infinie de 2-1 avec n'importe quel chiffre de départ

Posté par
Phenix3477
re : dm maths 08-10-20 à 19:33

Bonsoir a toute est a tous , j'ai une petite question j'ai le droit de demander a d'autre forum si un correcteur peut venir m'aidez a ma question ou pas ? Merci

*** message déplacé ***hors sujet à l'endroit où cela avait été posté ***

Posté par
ciocciu
re : dm maths 08-10-20 à 19:45

phenix..... non

*** message déplacé ***

Posté par
Phenix3477
re : dm maths 08-10-20 à 19:48

D'accord merci

*** message déplacé ***

Posté par
Phenix3477
re : Suite de Syracuse 08-10-20 à 20:44

Puis-je avoir une réponse s'il vous plaît .

Posté par
azerti75
re : Suite de Syracuse 08-10-20 à 21:39

Bonjour,

Tu n'as rien démontré du tout !

Par exemple pour 71, on obtient 71, 214, 107, 322, 161, 484,  242, 121, 364, 182, 91, 274, 137, 412, 206, 103,  310, 155, 466, 233, 700,  350, 175, etc.

Ta "démonstration" ne prouve pas qu'on ne va pas tourner en rond indéfiniment sans jamais aboutir à 4, 2, 1

Posté par
azerti75
re : Suite de Syracuse 08-10-20 à 21:45

Je continue:

71, etc...... , 175, 526, 263, 790, 395, 1186, 593, 1780.........

Démonte-moi qu'à ce stade-là, on va aboutir à 4, 2, 1

Posté par
azerti75
re : Suite de Syracuse 08-10-20 à 21:57

Je continue:

1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, etc.......

Démonte-moi qu'à ce stade-là, on va aboutir à 4, 2, 1

Posté par
verdurin
re : Suite de Syracuse 08-10-20 à 22:23

Salut,
pour répondre à azerti75, il est facile de voir que la suite va arriver à 4, 2, 1.
Il suffit de calculer assez longtemps.
Le problème de Phenix3477 est qu'il ne comprend pas la question de départ.

Posté par
azerti75
re : Suite de Syracuse 08-10-20 à 23:29

Bonsoir Verdurin,

Je sais qu'en continuant les calculs avec mon exemple, on va aboutir à 4-2-1.

C'était pour prouver que le pseudo raisonnement de Phenix était totalement faux.

Posté par
azerti75
re : Suite de Syracuse 08-10-20 à 23:38

J'avais essayé moi aussi il y a quelques années de ça de résoudre ce problème, sans succès.
J'avais testé tous les nombres inférieurs à 100 et effectivement on aboutissait toujours à 4-2-1.
Mais ça pouvait être très long avant d'arriver à 4-2-1.
Les nombres diminuaient puis ils augmentaient sans aucune logique apparente, d'où la difficulté de la démonstration.
Bref j'avais préféré abandonner

Posté par
ty59847
re : Suite de Syracuse 09-10-20 à 00:41

Phenix3477,

Après quelques mois de recherches, tu as dû t'informer un peu. Tu sais que plein de grands mathématiciens ont travaillé sur cette question, depuis plusieurs dizaines d'années.

Tu proposes une démonstration, qui tient en 5 lignes.  

Tu n'es pas capable de voir si ta démonstration est juste ou fausse, parce que tu ne sais pas ce que c'est, une démonstration.

Mais tu dois bien voir que si ta démonstration était juste, ça voudrait dire que les milliers de mathématiciens qui ont travaillé sur la question depuis des dizaines d'années sont tous des idiots. Même pas capables de voir un truc aussi évident !
Et ça, tu dois bien voir que ça ne colle pas.

Posté par
Phenix3477
re : Suite de Syracuse 09-10-20 à 08:19

1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, etc.......

Démonte-moi qu'à ce stade-là, on va aboutir à 4, 2, 1  



Ce stade la va aboutir a 4,2,1 car on va diviser par 2 jusqu'a avoir la suite 4-2-1 parceque le x3+1 va forcément rendre pair et ducoup on pourrat diviser par 2 donc on va faire que de déscendre en chiffre parfois remontée trés haut mais forcément redéscendre.

Posté par
Phenix3477
re : Suite de Syracuse 09-10-20 à 08:20

Aprés j'ai une autre "aide" que je ne peut pas prouver mais que je sait qu'elle est juste .

On ne tombera jamais sur deux chiffre impaire de suite dans la suite de Syracuse .

Posté par
Phenix3477
re : Suite de Syracuse 09-10-20 à 08:26

Ta "démonstration" ne prouve pas qu'on ne va pas tourner en rond indéfiniment sans jamais aboutir à 4, 2, 1



Si car si on tombe sur un nombre pair obligatoirement si on fait x3+1 c'est que forcément on pourra diviser par deux donc on pourra redescendre et puisque <On ne tombera jamais sur deux chiffre impaire de suite dans la suite de Syracuse .> D'aprés moi et je suis sur de ce que je dit on montera haut avec quelque chiffre mais dans tout les cas on redescendra forcément a 4-2-1

Posté par
Phenix3477
re : Suite de Syracuse 09-10-20 à 08:30

Est dans la suite de Syracuse le x3 ne sert a "rien". Donc la suite de syracuse on peut trés bien faire comme sa


Impaire : *2

Pair : +1                                   tu aura une suite de 1-2-1--2-1-2-1-2 infinie

Posté par
Phenix3477
re : Suite de Syracuse 09-10-20 à 08:32

réctification

IMPAIRE : +1

Pair : *2

Posté par
Phenix3477
re : Suite de Syracuse 09-10-20 à 12:44

Des que vous avez le temps pourriez vous me dire si ce que je dit est juste ou pas

Posté par
Yzz
re : Suite de Syracuse 09-10-20 à 17:56

Salut,

Non, ce n'est pas juste.
Des arguments tels que :
"obligatoirement si on fait" ;
"forcément on pourra" ;
"D'aprés moi" ;
"je suis sur de ce que je dit" ;
ne peuvent constituer une démonstration.

Ou alors, tu dois accepter celle-ci :
La conjecture de Syracuse est une énorme erreur, car "obligatoirement si on fait" x3+1 à tous les nombres entiers qui existent, "forcément on pourra" en trouver un qui ne redescend pas vers  4-2-1 "d'aprés moi". Et soyez-en certains :  "je suis sur de ce que je dit".

Posté par
azerti75
re : Suite de Syracuse 09-10-20 à 19:54

Bonsoir,

Phenix3477 @ 09-10-2020 à 08:19

1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, etc.......

Démonte-moi qu'à ce stade-là, on va aboutir à 4, 2, 1  



Ce stade la va aboutir a 4,2,1 car on va diviser par 2 jusqu'a avoir la suite 4-2-1 parceque le x3+1 va forcément rendre pair et ducoup on pourrat diviser par 2 donc on va faire que de déscendre en chiffre parfois remontée trés haut mais forcément redéscendre.


Tu ne fais qu'affirmer des choses sans rien justifier.
Dans mon exemple, on part de 71 et on arrive à 2158.
Pourquoi dis-tu qu'on va forcément redescendre ?
C'est ce qu'il faut démontrer en fait au cas où tu ne l'aurais pas compris.

Posté par
azerti75
re : Suite de Syracuse 09-10-20 à 19:59

J'imagine les devoirs de math de Phenix.

Par exemple, démontrer que les droites sont parallèles;

Réponse de Phenix: Forcément que les droites sont parallèles et croyez-moi j'en suis sûr.

Démontrer que la fonction est croissante.
Réponse de Phenix: Forcément qu'elle est croissante et croyez-moi j'en suis sûr.

Posté par
malou Webmaster
re : Suite de Syracuse 09-10-20 à 20:53

Bonsoir à tous
> azerti75,
Phenix3477 a renseigné un profil 3e...
Donc on va pouvoir lui apprendre plein de choses ...

Posté par
ty59847
re : Suite de Syracuse 09-10-20 à 23:03

Lui apprendre plein de choses, peut-être. Mais quelqu'un sait-il comment on acquiert le bon sens ?

Ce bon sens, cette compétence qui est transversale, qui est un prérequis nécessaire (pléonasme, je sais) avant d'acquérir n'importe quelle autre compétence.

Tous les mathématiciens qui ont travaillé sur cette conjecture depuis 80 ans ont échoué. Et dans le lot, il y a des cadors !
Et Phénix arrive en disant : je suis en 3ème, et je pense avoir résolu ce problème qui résiste à tout le monde depuis 80 ans.
Et la démonstration arrive ... 5 ou 6 lignes vides de sens.

Ok, en 3ème, on ne sait pas faire une démonstration, et je ne lui reproche pas le fait de ne pas savoir faire une démonstration.
Mais par contre, imaginer avoir trouvé une démonstration à ce problème, imaginer que ces 5 ou 6 lignes, ça fait une démonstration à un problème qui résiste à tous les mathématiciens, c'est une faute grave.

Posté par
verdurin
re : Suite de Syracuse 09-10-20 à 23:15

Salut Phenix3477.
Pour voir un exemple où il n'y a pas de multiplication par 3 tu peux lire ce fil Pas tout à fait Syracuse

Posté par
TheMathHatter
re : Suite de Syracuse 13-10-20 à 23:09

Bonjour Phenix,

Comme le dit justement Verdurin, je crois que tu n'as compris le problème. Le fait que l'étape "fois 3 plus 1" donne toujours un nombre pair ne prouve pas la conjecture. Cela nous dit seulement que cette étape sera nécessairement suivie d'une ou plusieurs divisions par 2 et donc que la suite continue indéfiniment.

Le fait que "cela redescend forcément" est justifiée par l'expérience et aussi par des ordinateurs qui ont essayé des nombres bien plus grands que 100. Mais à ce jour, il s'agit toujours d'une conjecture et il n'est pas certain qu'elle soit démontrée de notre vivant si l'on en croit Paul Erdos - un géant de la théorie des nombres - qui a déclaré que "les mathématiques n'étaient pas prêtes pour ce type de problème". Après tout la conjecture de Fermat aura attendue plus de 350 ans

Maintenant, si tu veux t'attaquer à une démonstration plus proche du niveau 3e, je te propose celle ci:

Démontrer qu'un nombre entier est pair si et seulement si son carré est pair.

Et tu n'as pas le droit d'utiliser le mot "forcément".
Bon courage.

Posté par
Phenix3477
re : Suite de Syracuse 14-10-20 à 21:36

Bonjour , merci .

Posté par
gthe
re : Suite de Syracuse 19-11-20 à 18:09

Si je peux intervenir (mais je pense que dans ce cas-là) oui, Phenix3477 pense avoir découvert "le truc de sa vie" parce qu'il croit à tort qu'il a résolue une démonstration que personne n'arrive à réaliser depuis des dizaines et des dizaines d'années...

Vous savez quoi ? Moi aussi quand j'étais jeune et que j'avais 15 ans (j'en ai presque le double), je pensais avoir découvert de super trucs en maths. J'étais tellement heureux que je débordais d'enthousiasme quand j'avais ce genre d'idées saugrenues en tête... Je pense que c'est ce qu'il a voulu faire.

Maintenant Phenix3477, je vais m'adresser à toi et je vais te rappeler comment la suite de Syracuse fonctionne (c'est évident pour tout le monde, mais pas forcément pour toi). Regarde bien la suite ! Après, je suis sûr que tu vas comprendre pourquoi ta démonstration n'est pas bonne.

Mais je retiens que c'est bien que tu sois venu nous voir et nous montrer des choses ! Et ça, il faut le souligner (parce que c'est rare...).

Je prends par exemple 26.
Si je tombe sur un nombre pair, je divise par 2 jusqu'à que le nombre n'est plus impair :
26 / 2 = 13
Si je tombe ensuite sur un nombre impair, immédiatement je le multiplie par 3 puis je lui rajoute +1 :
13 x 3 = 39 et 39 + 1 = 40.
Mon nombre est de nouveau pair : je divise par 2, jusqu'à que le nombre n'est plus pair :
40/2 = 20 et 20/2 = 10 et 10/2 = 5
Mon nombre est de nouveau impair, immédiatement, je le multiplie par 3 puis je lui rajoute +1 :
5 x 3 = 15 et 15+1 = 16
Mon nombre est de nouveau pair : je divise par 2, jusqu'à que le nombre n'est plus pair :
16/2 = 8 et 8/2 = 4 et 4/2 = 2 et 2/2 = 1.
Ma suite de Syracuse est finie car j'ai obtenu 1.

Si jamais ta suite commence par un nombre impair, retiens qu'il faut d'abord que tu multiplies par 3 puis que tu rajoutes 1 (exemple : je commence par 27 alors ça donne 27 x 3 = 81 et 81+1 = 82). Ensuite, ce sera forcément pair et tu pourras enchaîner jusqu'à que tu obtiennes 1

Enfin, Phenix3477, une démonstration, c'est une explication où tu dois rester neutre. C'est comme une enquête policière, mais avec des mathématiques. Mais les professeurs te l'expliqueront bien mieux que moi

Bon courage à toi et n'hésite pas à poster de nouvelles trouvailles. On pourra toujours te dire si tu as juste ou pas.

G.H.

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !