Inscription / Connexion Nouveau Sujet
Niveau seconde
Partager :

tangentes de cercle et de triangles

Posté par
LeLT
05-11-18 à 00:00

Bonjour pouvez vous m'aider pour ce sujet svp je n'ai pas compris
Merci d'avance

(C) est un cercle de centre O et A, un point exterieur a (C).
On veut trouver une méthode pour construire, avec une règle graduée et un compas, les tangentes au cercle (C) issues de A. On commence d'abord par supposer le problème résolu et on étudie la figure obtenue. On en deduit  alors une methode de construction.

1)Etude de la figure construite

On suppose ici que les droites sont tangentes au cercle.
a) Que peut-on dire du triangle OPA? et du triangle OAQ ?  Justifier
b) Quel est le centre du cercle circonscrit à ces triangles ?   Expliquer

2) Construction de la figure

On considère maintenant un cercle (C) et un point A exteireur au cercle.
a) En utilisant le résultat de la question 1)b), rédiger un programme de construction des points P et Q.
b)Justifier que les droites (AP) et (AQ) sont bien tangente au cercle (C).

 tangentes de cercle et de triangles

Posté par
mathafou Moderateur
re : tangentes de cercle et de triangles 05-11-18 à 00:08

Bonjour,
c'est quoi la définition de "tangente au cercle"

tout dépendra de quelle définition tu as..

Posté par
LeLT
re : tangentes de cercle et de triangles 05-11-18 à 00:12

bonjour merci de votre aide
D'après ce que j'ai pu comprendre, tangente au cercle, c'est quand la droit et le cercle n'ont qu'un seul point en commun ( ils se touchent sur un seul point) ici en l'occurrence, le point A

Posté par
mathafou Moderateur
re : tangentes de cercle et de triangles 05-11-18 à 00:20

et c'est tout ce que tu sais sur les tangentes à un cercle ?? tu es sur ?
même pas une histoire avec le rayon OP ?

Posté par
LeLT
re : tangentes de cercle et de triangles 05-11-18 à 00:27

Non c'est absolument tout ce qu'il y a sur cet exercice de DM

Posté par
mathafou Moderateur
re : tangentes de cercle et de triangles 05-11-18 à 00:30

je ne parle pas de l'énoncé mais de tes cours depuis la 6ème.

Posté par
LeLT
re : tangentes de cercle et de triangles 05-11-18 à 00:43

depuis la 6 eme je ne sais pas
mais cette année, ce qu'on a vu principalement la dessus c'etait un poli avec dessus une propriete :

Un cercle (C) et la tangente (T) en un point M a ce cercle (C) ont un unique point commun : le point ................ appelé .......................................... du cercle (C) de la tangente (T)


Le teste s'appelait : 2) cercles :

et il y avait en gros la definition que j'ai mise la haut

Posté par
mathafou Moderateur
re : tangentes de cercle et de triangles 05-11-18 à 01:13

alors on va devoir démontrer la propriété fondamentale que tu devrais savoir et que tu sembles avoir complètement oubliée, comme beaucoup de chose apprises en collège sans doute ..
que la tangente à un cercle est la perpendiculaire au rayon en son extrémité
que OP est perpendiculaire à AP
(c'est la définition de collège d'une tangente à un cercle)

partons donc de ta définition que la tangente à un cercle en T a un seul point commun avec ce cercle : le point T

peut être faudrait il d'abord rappeler la définition d'un cercle et d'un disque
cercle : ensemble de tous les points à la même distance appelée rayon (valeur) d'un point appelé centre
disque ensemble des points intérieurs à un cercle, c'est à dire dont la distance au centre est inférieure au rayon
tous les points intérieurs ont une distance au centre inférieure au rayon , tous les points extérieurs au cercle ont une distance au centre > rayon
toute droite joignant un point strictement intérieur à un cercle à un point extérieur au cercle ou sur le cercle coupe ce cercle en deux points

ainsi que des propriétés fondamentales des distances en général et en particulier d'un point à une droite :
la distance d'un point A à un point M d'une droite (d) ne contenant pas A est minimale quand (AM) est perpendiculaire à la droite (d) (équivaut à "dans tout triangle rectangle l'hypoténuse est > aux côtés de l'angle droit")
cette distance minimale est appelée distance du point à la droite (d)

on est maintenant armé pour prouver la propriété fondamentale des tangentes à un cercle

en effet si elle a un seul point commun avec ce cercle c'est forcément qu'elle est toute entière à l'extérieur de ce cercle (sinon elle le couperait en deux points) à l'exception du seul point de contact qui est sur le cercle

donc la distance du centre O à ce point de contact T est la distance minimale de O à tous les points de la tangente (puisqu'il sont tous à > cette distance car extérieurs au cercle)
donc OT est perpendiculaire à la tangente en T

Posté par
LeLT
re : tangentes de cercle et de triangles 07-11-18 à 22:41

Merci beaucoup c'est super sympa de votre part !!!!!
merci de m'avoir aidé !
à bientot j'espère



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1706 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !