Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Volume d'un solide

Posté par
Keaume
06-12-18 à 03:00

Bonjour,

J'aimerais résoudre à l'aide d'une intégrale définie, le volume d'un solide obtenu en ayant une rotation d'un disque de rayon r , centré en (k;0) ( avec r inférieur à k ) autour de l'axe des ordonnées.

Pouvez-vous m'aider ?

Merci d'avance,
Thomas

Posté par
Glapion Moderateur
re : Volume d'un solide 06-12-18 à 11:49

Donc tu veux le volume d'un tore en fait.
trouve déjà l'équation du cercle qui engendre le tore (cadeau (x-k)²+y²=r²)
La section de ton solide à une hauteur y c'est donc une couronne entre deux cercles concentriques de rayons
k-(r²-y²) et k+(r²-y²) .

Calcule déjà son expression en fonction de y . S(y) = .... ?
Ensuite tu n'auras plus qu'à intégrer S(y)dy avec y variant de -r à r.

Posté par
Glapion Moderateur
re : Volume d'un solide 06-12-18 à 12:50

Et pour mémoire, il y a un chouette théorème qui donne immédiatement le résultat, le théorème de Guldin qui dit " La mesure du volume engendré par la révolution d'un élément de surface plane autour d'un axe situé dans son plan et ne le coupant pas est égale au produit de l'aire de la surface par la longueur de la circonférence décrite par son centre de gravité"

Autrement dit, dans notre cas ça donne V = (r²)(2k) = 2²r²k

Posté par
Keaume
re : Volume d'un solide 06-12-18 à 14:57

Bonjour,

Merci beaucoup pour vos réponses !
Comme écrit dans mon premier poste, il me faut une intégrale définie, donc je ne peux pas utiliser le théorème de
Donc mes deux bornes de mon intégrale sont :

Borne intérieure
k-sqrt(r^2-y^2)

Borne supérieure
k+sqrt(r^2-y^2)

Est-ce que correct ?

Concernant S(y) pouvez-vous m'en dire un peu plus ?

Posté par
mathafou
re : Volume d'un solide 06-12-18 à 15:04

Bonjour,

ça c'est pas les bornes !
c'est les rayons des deux disques dont la différence est la couronne d'aire = S(y)
les bornes c'est de -r à +r.

Posté par
Keaume
re : Volume d'un solide 06-12-18 à 15:17

Je crois ne pas comprendre comment obtenir S(y), je sais que l'intégrale est définie entre -r et r, mais qu'en est-il de la fonction à intégrer ?

Posté par
mathafou
re : Volume d'un solide 06-12-18 à 15:32

l'aire d'une couronne, différence entre les disques de rayons k+sqrt(r^2-y^2)  et k-sqrt(r^2-y^2)  

y c'est l'altitude du plan de coupe (matérialisé par le trait mixte) qui coupe le tore en la couronne bleue (vue de dessus)
S(y) c'est l'aire bleue en fonction de OC = y

Volume d'un solide

on découp le tore en tranches "bleues" d'épaisseur dy
et le volume d'une tranche est  S(y)dy

et le volume du tore \int_{-r}^{+r} S(y)dy

Posté par
Keaume
re : Volume d'un solide 06-12-18 à 15:56

Merci pour votre dessin, ça m'éclaire un peu plus, mais comment calculer l'aire en bleue ?

Posté par
mathafou
re : Volume d'un solide 06-12-18 à 16:05

tu ne sais pas calculer l'aire d'un disque de rayon connu (en littéral) ???
les rayons d'après toi elles viennent d'où ça les formules de Glapion ?

et faire une soustraction pour calculer l'aire bleue, différence de deux disques ?

tout avait été dit déja par Glapion à 11:49, le fait que c'est une couronne (entre deux cercles = différence des deux disques), les rayons, les bornes, tout.
tu n'avais plus qu'à faire les calculs avec ça.

Posté par
Keaume
re : Volume d'un solide 06-12-18 à 16:16

Donc S(y) = pi * r²  dy

Avec r = (k+sqrt(r²-y²)

?

Excusez-moi j'ai vraiment du mal avec ce chapitre

Posté par
Glapion Moderateur
re : Volume d'un solide 06-12-18 à 16:40

non
l'aire de la couronne bleu c'est pas r², on t'a expliqué que c'était la différence entre les aires des cercles de rayon k+sqrt(r²-y²) et k-sqrt(r²-y²).

Et puis tu ne multipliera par dy que pour avoir le volume, pas pour l'aire.

Posté par
mathafou
re : Volume d'un solide 06-12-18 à 16:44

pagaille.

1)
il n'y a pas de "dy" dans S(y) !! ça ne rime à rien
c'est dans l'intégrale qu'il va y avoir  un dy,  qui représente, si on veut, l'épaisseur (infime) de la tranche de tore
S(y)dy est un volume

et avec l'intégrale on additionne tous ces (petits) volumes
c'est la signification de \int_{-r}^{+r} S(y)dy
somme de tous les petits volumes S(y)dy des cylindres de bases S(y) et de hauteur dy, pour "toutes" les valeurs de y de -r à +r

2) S(y) n'est pas l'aire du grand disque !
mais l'aire de la couronne, la différence entre les deux aires

3) la salade de "r" qui veulent dire des choses différentes n'aide pas !

en Terminale l'aire d'un disque de rayon k+sqrt(r²-y²) est directement pi (k+sqrt(r²-y²))² sans qu'il soit nécessaire de réciter servilement la formule générale de l'aire d'un disque ni de faire intervenir un autre "r" qui voudrait dire autre chose que le "r" de l'énoncé.

mais encore une fois, ça ce n'est pas l'aire de la couronne.

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1348 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !