Inscription / Connexion Nouveau Sujet
Niveau 3 *
Partager :

Vous avez dit magique ?***

Posté par
Victor
27-10-04 à 19:36

A l'aide des neuf diviseurs de 36, compléter le carré multiplicativement magique ci-dessous, c'est-à-dire que les produits des nombres de chaque ligne, de chaque colonne et de chacune des deux diagonales sont égaux.

Bon courage.
Clôture jeudi soir.


Vous avez dit magique ?

Posté par fofolle_en_sucre (invité)re : Vous avez dit magique ?*** 27-10-04 à 20:18

gagnéAlors je diré

12  9   2
1   6   36
18  4   3

Posté par
J-P Posteur d'énigmes
re : Vous avez dit magique ?*** 27-10-04 à 20:19

gagnéUn parmi quelques autres.




Vous avez dit magique ?

Posté par titimarion (invité)re : Vous avez dit magique ?*** 27-10-04 à 20:41

gagné36=2^2*3^2
ses diviseurs sont 1,2,3,4,6,9,12,18,36
on peut logiquement chercher à remplir le carré pour que chaque produit soit égal à 2^3*3^3
Ainsi on arrive a ce que 36 soit associé à (6,1) et (3,2) et 1 est associé à (36,6) et (18,12)
On n'a plus qu'a écrire le carré
2   9   12

36   6    1

3   4   18
c'est pas beau mais j'ai essayé de le mettre sous la forme d'une matrice avec latex mais ni \begin{pmatrix} ni \begin{array}{ccc} ne fonctionne donc voila.

Posté par Nanofarat (invité)Ca y est!! j ai trouvé!! 27-10-04 à 22:40

gagné |  2 | 36  |  3  |
|  9 |  6  |  4  |
|  12|  1  |  18 |


Toutes les lignes, colonnes et diagonales ont un produit égal à 216!

Posté par BioZiK (invité)re : Vous avez dit magique ?*** 27-10-04 à 23:01

18  4   3
1  6  36
12  9   2

le produit des termes des diagonales, des lignes ou des colonnes vaut toujours 216.

si quelqu'un veut que je lui explique ma méthode de recherche je lui expliquerais (je me suis basé sur les carrés magiques par somme)

il y a bien sur d'autres solution (par rotation ou échange de lignes ou collones)

PS: le 6 doit toujours être au milieu

Posté par
franz
re : Vous avez dit magique ?*** 28-10-04 à 00:01

gagnéSolution :

\begin{tabular}{ccc}2&36&3\\9&6&4\\12&1&18\end{tabular}

Explication :
Désignons par P la constante égale au produit des nombres de chaque ligne.
Si on effectue le produit des trois lignes horizontales, on obtient P^3 = 1.2.3.4.6.9.12.18.36 = 216^3 d'où P=216.

Désignons par maintenant par C la valeur de la cellule au centre du carré magique.
Si on effectue le produit des deux diagonales et des deux lignes "médianes" , on obtient le produit de toutes les cases comptées 1 fois à l'exception de la case centrale qui est comptée 4 fois.
P^4 = 216^4 = 1.2.3.4.6.9.12.18.36.C^3 = 216^3 C^3       aux symetries près
d'où C=6.
(ça paraît logique mais c'st mieux en le prouvant).

Le produit de deux cases situées de par et d'autre du 6 central fait donc 36.
Si on place le 36 dans un coin du carré, le 1 est nécessairement "diamétralement" opposé. Le produit des deux cases situées sur une ligne portant 36 fait 6. Le 1 ne pouvant être sur cette ligne la seule possibilité est d'avoir une ligne contenant 2,3 et 36.
le 36 ne se trouvant à l'intersection que de 2 lignes, il ne peut être dans un coin du carré. Le 2 et le 3 se situent de part et d'autre du 36 et le reste du carré se remplit naturellement.

Posté par pinotte (invité)re : Vous avez dit magique ?*** 28-10-04 à 00:31

gagnéLe produit des nombres de chaque ligne, colonne et diagonale est de 216. Les nombres sont placés ainsi:

3-36-2
4--6--9
18-1-12

Posté par Strubel (invité)re : Vous avez dit magique ?*** 28-10-04 à 10:18

gagnéAlors le produit à obtenir à chaque fois est 216!
Le chiffre central est 6!

Mon carré:    2   36   3
              9    6   4
              12   1   18

Posté par claireCW (invité)re : Vous avez dit magique ?*** 28-10-04 à 11:25

gagné12  -  1  -  18

9   -  6  -  4

2   -  36 -  3


36= 2²*3², donc les 9 diviseurs Xi sont de la forme 2exp(ai)*3exp(bi),avec ai et bi prenant comme valeurs 0; 1 et 2.

Soit C la constante produit des nombres de chaque ligne, chaque colonne et chaque diagonale.

si on fait le produit des 9 diviseurs, c'est-à- dire le produit des produits des 3 lignes, par exemple, on obtient

C*C*C = Produit Xi, avec i parcourant 1 - 9, soit le produit avec i, j parcourant 0;1;2, des termes 2exp(i)*3exp(j).

On obtient C = 2exp(3)*3exp(3).

Le problème peut donc se traduire par : trouver 2 carrés magiques classiques (donc par addition), comportant 3 fois les termes 0;1;2, avec pour somme 3.

On trouve

2 - 0 - 1          1 - 0 - 2
0 - 1 - 2    et    2 - 1 - 0
1 - 2 - 0          0 - 2 - 1

La case n°x du carré multiplicatif magique contient donc le terme 2 exp(case X du carré 1)* 3 exp(case X du carré 2).

Posté par Graubill (invité)re : Vous avez dit magique ?*** 28-10-04 à 12:24

gagnéLes diviseurs de 36 sont 1/2/3/4/6/9/12/18/36

Je propose:

3  4 18
36 6 1
2  9 12

Posté par moor31 (invité)re : Vous avez dit magique ?*** 28-10-04 à 13:44

gagnéVoici ma réponse :

3   4   18
36  6   1
2   9   12

Posté par
dad97 Correcteur
re : Vous avez dit magique ?*** 28-10-04 à 14:14

gagnéUne possibilité :

18 1 12

4 6 9

3 36 2

Posté par draluom (invité)re : Vous avez dit magique ?*** 28-10-04 à 14:15

gagnéLes diviseurs de 36 sont 1;2;3;4;6;9;12;18;36

-------------------
|  12  |   1  |  18  |
-------------------
|   9   |   6   |   4  |
-------------------
|   2   |  36  |   3  |
-------------------

Voilà,  les produits des nombres de chaque ligne, de chaque colonne et de chacune des deux diagonales sont tous égaux avec 216 comme résultat.
Désolé si mon carré n'est pas très joli, je savais pas comment faire.

Posté par la_fureur (invité)re : Vous avez dit magique ?*** 28-10-04 à 18:39

gagnéLe produit des nombres de chaque ligne, de chaque colonne et de chacune des deux diagonales est égal à 216 .

2     36     3
9     6      4
12    1      18

Posté par
Victor
re : Vous avez dit magique ?*** 28-10-04 à 19:32

Bonsoir à tous,

félicitations, que des bonnes réponses pour cette énigme qui apparemment n'était pas assez difficile pour vous.

Merci à franz et à claireCW pour leurs justifications.

Les produits des trois nombres de chaque ligne, de chaque colonne et de chacune des deux diagonales sont égaux à 216.
216 est la constante du plus petit carré magique multiplicatif, découvert par Dudeney.
Ce nombre a la particularité (sans lien avec l'énigme) d'être le plus petit cube somme de trois cubes avec cette belle égalité :
63 = 33 + 43 + 53.

Je vous donne ci-dessous les huit réponses à cette énigme.
Bonne soirée et encore bravo !!!



Vous avez dit magique ?

Posté par zedetraquer (invité)re : Vous avez dit magique ?*** 30-10-04 à 22:21

12 1 18
-------
9  6   4
-------
2 36 3

Posté par Emma (invité)re : Vous avez dit magique ?*** 31-10-04 à 01:42

Exact, zedetraquer mais.. trop tard : le challenge était terminé

Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 10:17:05.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !