Fiche de mathématiques
> >

Baccalauréat Général
Série Economique et Social
Centres Étrangers - Session Juin 2010

Partager :
L'utilisation d'une calculatrice est autorisée.
Le candidat doit traiter les quatre exercices.
La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
Coefficient : 5 (pour les candidats n'ayant pas suivi l'enseignement de spécialité) ou 7 (pour les candidats ayant suivi l'enseignement de spécialité)     Durée : 3 heures
5 points

exercice 1 - Commun à tous les candidats

Pour chacune des questions, une seule des réponses a), b) ou c) est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée. Une réponse exacte rapporte 1 point. Une réponse inexacte enlève 0,25 point. L'absence de réponse ne rapporte aucun point et n'en enlève aucun. Si le total des points est négatif, la note est ramenée à 0.

1. Le nombre réel \text{e}^{\frac{3x}{2}} est égal à :
a) \dfrac{\text{e}^{3x}}{\text{e}^2}b) \text{e}^{3x} - \text{e}^2c) \left(\sqrt{\text{e}^{x}}\right)^3


2. L'équation \ln \left(x^2 + x + 1\right) = 0 admet sur \mathbb{R} :
a) Aucune solutionb) Une seule solutionc) Deux solutions


3. L'équation \text{e}^x = \text{e}^{-x} admet sur \mathbb{R} :
a) Aucune solutionb) Une seule solutionc) Deux solutions


4. On considère une fonction f définie sur l'intervalle [1 ;  +\infty[ vérifiant la propriété suivante :
Pour tout x \in  [1 ;  +\infty[, \dfrac{1}{x} \le f(x) \le 1.
On peut alors affirmer que :
a) \displaystyle \lim_{x \to + \infty} \dfrac{f(x)}{x} = 0b) \displaystyle \lim_{x \to + \infty} \dfrac{f(x)}{x} = 1c) \displaystyle \lim_{x \to + \infty} \dfrac{f(x)}{x} = + \infty  


5. On considère deux fonctions f et g définies sur un intervalle I, telles que g est une primitive de la fonction f sur I. On suppose que la fonction g est croissante sur I. Alors on peut affirmer que :
a) La fonction g est positive sur I.b) La fonction f est positive sur I.c) La fonction f est croissante sur I.

5 points

exercice 2 - Candidats n'ayant pas suivi l'enseignement de spécialité

Le tableau ci-dessous indique l'évolution de la dette en milliards d'euros de l'État français entre 1990 et 2004 :
Année19901992199419961998200020022004
Rang de l'année x_{i}01234567
Dette y_{i} en milliards d'euros271,7321,4443540,1613,1683,5773,4872,6
Source : INSEE

Dans tout l'exercice, on donnera des valeurs approchées arrondies au dixième.

Partie A : Étude statistique

1. Calculer la dette moyenne de l'État entre 1990 et 2004.

2. En prenant l'année 1990 comme référence (indice 100), calculer les indices correspondant à la dette de l'État de 1992 à 2004. Donner la réponse sous forme d'un tableau.

3. Déterminer le taux global d'évolution de la dette de l'État entre 1990 et 2004.

4. Déterminer le taux moyen d'évolution de la dette de l'État sur une période de deux ans.

Partie B : Interpolation et extrapolation de données

On donne ci-dessous le nuage de points associé à la série statistique \left(x_{i}  ; y_{i}\right).
bac économique et social Centres Étrangers Juin 2010 - terminale : image 1
La forme du nuage permet d'envisager un ajustement affIne.

1. En utilisant la calculatrice, donner une équation de la droite d'ajustement affine de y en x obtenue par la méthode des moindres carrés.

2. Selon cet ajustement, à partir de quelle année peut-on estimer que l'État aurait dépassé les 1 000 milliards de dette ?

3. Selon cet ajustement, déterminer l'année à partir de laquelle la dette de l'État sera le double de la dette de l'an 2000.


5 points

exercice 2 - Candidats ayant suivi l'enseignement de spécialité

Le nombre d'arbres d'une forêt, en milliers d'unités, est modélisé par la suite (u_{n})u_{n} désigne le nombre d'arbres, en milliers, au cours de l'année (2010 + n). En 2010, la forêt possède 50 000 arbres. Afin d'entretenir cette forêt vieillissante, un organisme régional d'entretien des forêts décide d'abattre chaque année 5 % des arbres existants et de replanter 3 000 arbres.

1. Montrer que la situation peut être modélisée par :
u_{0} = 50 et pour tout entier naturel n par la relation : u_{n + 1} = 0,95u_{n} + 3.

2. On considère la suite (v_{n}) définie pour tout entier naturel n par v_{n} = 60 - u_{n}·
    a) Montrer que la suite (v_{n}) est une suite géométrique de raison 0,95.
    b) Calculer v_{0}. Déterminer l'expression de v_{n} en fonction de n.
    c) Démontrer que pour tout entier naturel n, u_{n} = 60 - 10 \times (0,95)^n·

3. Déterminer le nombre d'arbres de la forêt en 2015. On donnera une valeur approchée arrondie à l'unité.

4. a) Vérifier que pour tout entier naturel n, on a l'égalité
u_{n + 1}  - u_{n} = 0,5 \times  (0,95)^n.

    b) En déduire la monotonie de la suite.

5. Déterminer l'année à partir de laquelle le nombre d'arbres de la forêt aura dépassé de 10 % le nombre d'arbres de la forêt en 2010.

6. Déterminer la limite de la suite (u_{n}). Interpréter.


5 points

exercice 3 - Commun à tous les candidats

Pour une marque de téléphone portable donnée, on s'intéresse à deux options de dernière technologie proposées, le GPS et le Wifi. Sur l'ensemble des téléphones portables, 40 % possèdent l'option GPS. Parmi les téléphones avec l'option GPS, 60 % ont l'option Wifi.

On choisit au hasard un téléphone portable de cette marque et on suppose que tous les téléphones ont la même probabilité d'être choisis.
On considère les évènements suivants :
    G : «le téléphone possède l'option GPS».
    W : «le téléphone possède l'option Wifi».
Dans tout l'exercice, le candidat donnera des valeurs exactes.

1. Traduire les données chiffrées de l'énoncé en termes de probabilité.

2. Représenter la situation à l'aide d'un arbre pondéré, qui sera complété tout au long de l'exercice.
On suppose que la probabilité de W est : p(\text{W}) = \dfrac{7}{10}.

3. Déterminer la probabilité de l'évènement «le téléphone possède les deux options».

4. Démontrer que p_{\overline{\text{G}}}(\text{W}) = \dfrac{23}{30}. Compléter l'arbre du 2.

5. On choisit un téléphone avec l'option Wifi. Quelle est la probabilité qu'il ne possède pas l'option GPS ?
Le coût de revient par téléphone d'une option, pour le fabricant de téléphones, est de 12 euros pour l'option GPS et de 6 euros pour l'option Wifi.

6. Déterminer la loi de probabilité du coût de revient de ces deux options.

7. Calculer l'espérance mathématique de cette loi. Interpréter ce résultat.


5 points

exercice 4 - Commun à tous les candidats

On considère la fonction f définie sur ]0 ; +\infty[ par
f(x) = 1 + \ln(x).
On note \mathcal{C}_{f} la courbe représentative de f dans un repère du plan.
Le point A(e ; 2) appartient à \mathcal{C}_{f} et on note T_{\text{e}} la tangente à \mathcal{C}_{f} au point A.
Le point C est le point d'intersection de la tangente T_{\text{e}} et de l'axe des abscisses. Le point E a pour coordonnées (e ; 0).
On admettra que sur ]0 ; +\infty[, \mathcal{C}_{f} reste en dessous de T_{\text{e}}.
bac économique et social Centres Étrangers Juin 2010 - terminale : image 2

1. a) Le point B est le point d'intersection de \mathcal{C}_{f} et de l'axe des abscisses.
Calculer les coordonnées du point B.
    b) Démontrer que, pour x \ge \dfrac{1}{\text{e}},  f(x) \ge  0.

2. a) Déterminer une équation de T_{\text{e}}.
    b) En déduire les coordonnées du point C.
    c) Vérifier que les points E et C sont symétriques par rapport à O, origine du repère.

On considère la fonction g définie sur ]0 ; +\infty[ par g(x) = x \ln x.

3. a) Démontrer que la fonction g est une primitive de la fonction f sur ]0 ; +\infty[.
    b) En déduire la valeur exacte de \displaystyle \int_{\frac{1}{\text{e}}}^{\text{e}} (1 + \ln x)\:\text{d}x. Interpréter ce nombre.

4. Dans cette question, toute trace de recherche même non aboutie sera prise en compte.
Déterminer la valeur exacte de l'aire, exprimée en unités d'aire, du domaine limité par \mathcal{C}_{f}, T_{\text{e}} et les droites parallèles à l'axe des ordonnées passant par B et E. Ce domaine est grisé sur le graphique. Donner une valeur approchée arrondie au millième de cette aire.
Publié le
ceci n'est qu'un extrait
Pour visualiser la totalité des cours vous devez vous inscrire / connecter (GRATUIT)
Inscription Gratuite se connecter


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1330 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !