Baccalauréat Technologique
Série Sciences et Techniques de Laboratoire
Option : Chimie de Laboratoire et de Procédés Industriels
Métropole - Session Septembre 2010
Durée de l'épreuve : 3 heures - Coefficient 4
L'utilisation d'une calculatrice est autorisée (circulaire N°99-186 du 16 novembre 1999).
Le sujet est composé de deux exercices indépendants et d'un problème.
Le candidat doit traiter les deux exercices et le problème.
Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
Le formulaire officiel et du papier millimétré sont distribués avec le sujet.
4 points exercice 1
On considère l'équation différentielle :
 :\quad 4 y'' + 25 y = 0,)
dans laquelle

est une fonction définie et deux fois dérivable sur

, et

la fonction dérivée seconde de

.
1. Résoudre l'équation différentielle (E).
2. Déterminer la fonction

, solution de (E) vérifiant :
 = \sqrt{2})
et
 = 0)
.
3. Vérifier que, pour tout

de

, on a :
 = 2\cos \left(\dfrac{5}{2}t - \dfrac{\pi}{4}\right))
.
6 points exercice 2
Le plan complexe est muni du repère orthonormal
)
. On prendra pour unité graphique 1 cm. On considère les points A, B et C d'affixes respectives :
,
,
.
1. Déterminer le module et un argument de chacun des nombres complexes

et

.
2. Écrire les nombres

et

sous forme exponentielle. Écrire

sous forme algébrique. Placer les points A, B et C sur une figure.
3. Déterminer la nature du triangle ABC.
4. Déterminer l'affixe du point D tel que le quadrilatère ABDC soit un rectangle.
10 points probleme
Partie A
On considère la fonction

définie sur

par :
.
On note

sa courbe représentative dans un repère orthogonal
)
. On prendra pour unité graphique 5 cm sur l'axe des abscisses et 10 cm sur l'axe des ordonnées.
1. Déterminer la limite de

en

.
2. Montrer, pour tout

réel, l'égalité :
 = \text{e}^{x}\left(- \text{e}^{x} + 6 - 4x\text{e}^{-x} - 5\text{e}^{-x}\right))
.
En déduire la limite de

en

.
3. a) Calculer la dérivée de la fonction

.
b) Montrer, pour tout

réel, l'égalité:
.
c) Étudier le signe de

.
d) Dresser le tableau de variation de

. On calculera les valeurs exactes de
)
et
)
.
4. Recopier puis compléter le tableau de valeurs suivant. On donnera les résultats arrondis au centième.
 | -1 | -0,8 | -0,6 | -0,4 | -0,2 | 0 | 0,2 | 0,4 | 0,6 | 0,8 | 1 |
) | | | | | | | | | | | |
5. Représenter la courbe

. On placera les tangentes horizontales.
Partie B
Soit

la partie du plan délimitée par la courbe

l'axe des abscisses, l'axe des ordonnées et la droite d'équation

.
1. Hachurer ce domaine sur la figure.
2. Montrer l'égalité :
\:\text{d}x = \dfrac{\text{e}^{-2}}{2} - 6\text{e}^{-1} + \dfrac{5}{2})
.
3. Exprimer l'aire du domaine

en cm
2. On donnera un arrondi au centième de ce nombre.