Inscription / Connexion Nouveau Sujet
Niveau 2 *
Partager :

Challenge n°24**

Posté par
puisea Posteur d'énigmes
18-10-04 à 20:29

Combien y a-t-il de nombres de trois chiffres dont l'un des trois est la moyenne des deux autres ?

Bonne chance à tous
clôture dans environ 24 heures.

Posté par
clemclem Posteur d'énigmes
re : Challenge n°24** 18-10-04 à 20:52

perduBonjour,
Alors je tente ma chance mais je pense sentir fortement le poisson et je dis 105 nombres de trois chiffres et dont la moyenne est la somme des deux autres.J'exclut le nombre 000 sinon cela fait 106

Posté par
J-P Posteur d'énigmes
re : Challenge n°24** 18-10-04 à 21:15

gagnéBon, je suppose que quand tu dis la moyenne, c'est la moyenne arithmétique, mais cela aurait mérité d'être précisé.

Si c'est le cas, ma réponse est 121.
-----------------------------------------
(Si cela avait été la moyenne géométrique, on aurait eu 42).
-----
Il y a encore une seconde ambiguïté dans l'énoncé.
Tu dis ... dont l'un des trois est la moyenne des deux autres .

Il y a des nombres(exemple 111 , 222 ...) ou la propriété existe avec différentes combinaisons des chiffres, j'ai comptabilisé ces nombres avec un poids de 1, il n'est pas évident d'après l'énoncé s'il fallait les inclure dans le comptage.
------
Tant pis:

Je redis 121.


Posté par ericbfd (invité)re : Challenge n°24** 18-10-04 à 21:18

perduMa reponse est:9
111,222,333,444,555,666,777,888,999

Posté par Khawarezmi (invité)re : Challenge n°24** 18-10-04 à 21:26

perdu50 nombres

Posté par Dafne33 (invité)reponse 18-10-04 à 21:27

perdu50

Posté par Dafne33 (invité)facile 18-10-04 à 21:27

perdu50

Posté par cloclo11 (invité)re : Challenge n°24** 18-10-04 à 21:30

perduBonsoir,
Je dirais 14*6+9=93

Posté par lykos (invité)reponse 18-10-04 à 21:36

perdu297
mais bon c'est un calcul perso je ne guaranti rien

Posté par Dafne33 (invité)Petitee faute de comprehension 18-10-04 à 21:43

perduc'est mille et pas 50

Posté par Strubel (invité)re : Challenge n°24** 18-10-04 à 22:23

perduAlors je pense que c'est 49!!!
(Si c'est à 1 près tu peux me compter sa juste)
Je dis sa parce que je ne sait pas si on compte 000 dans ce cas sa ferait 50!
lol
Bon j'ai tenté ma chance en espérant que ce soit bon!!!

Posté par moor31 (invité)re : Challenge n°24** 18-10-04 à 23:42

perduJe dirais 91 !!!

Posté par pinotte (invité)re : Challenge n°24** 19-10-04 à 02:39

gagnéJe dirais 121...!

Posté par taniab (invité)re : Challenge n°24** 19-10-04 à 13:14

gagnésans aucune conviction je propose 121 nombres.

Posté par Graubill (invité)re : Challenge n°24** 19-10-04 à 13:56

gagnémoyenne 1: (0,1 et 2) ou (1,1,1)
102,120,201,210, 111
M1=5
Moyenne 2 (0,2,4) ou (1,2,3) ou (2,2,2)
204,240,402,420,123,132,213,231,312,321,222
M2=11
Moyenne 3 (0,3,6) ou (1,3,5) ou (2,3,4) ou (3,3,3)
M3=17
Moyenne 4 (0,4,8) ou (1,4,7) ou (2,4,6) ou (3,4,5) ou (4,4,4)
M4=23
Moyenne 5 (1,5,9) ou (2,5,8) ou (3,5,7) ou (4,5,6) ou (5,5,5)
M5=25
Moyenne 6 (3,6,9) ou (4,6,8) ou (5,6,7) ou (6,6,6)
M6=19
Moyenne 7 (5,7,9) ou (6,7,8) ou (7,7,7)
M7=13
Moyenne 8 (7,8,9) ou (8,8,8)
M8=7
Moyenne 9 (9,9,9)
M9=1

M=sum(Mi)= 121


Posté par
dad97 Correcteur
re : Challenge n°24** 19-10-04 à 17:27

perdu81

Posté par
theprogrammeur
re : Challenge n°24** 19-10-04 à 18:17

gagnéMa réponse est 121. Cepandant si l'on considère que 000, 012 ... sont des nombres formés de trois chiffres, alors leur nombre est de 130.

Posté par
puisea Posteur d'énigmes
re : Challenge n°24** 19-10-04 à 20:54

Voila, environ 24 heures sont passées, correction !!

Réponse : 121

Correction :
Si l'un des trois chiffres les moyennes des deux autres, alors c'est que, classés par odre croissant ils sont en progression arithmétique. Cette progression peut-être de raison 0, 1, 2, 3 ou 4.
Considérons chacune de ses progrssions successivement :
- il y a 9 nombres tels que 111, 222, ..., AAA (avec A0).
- il y a 123, 234, 345, ..., 789, ce qui en fait 7, et tout ceux qui s'en déduisent par permutation : 7 x 6 = 42.
- puis 135, 246, 357, 468 et 579 qui en font 5 x 6 = 30 de plus.
- puis, on a 147, 258, et 369 ce qui en fait 3 x 6 = 18 de plus.
- Enfin 159, soit 6 possibilités.
Cela fait 9+42+30+18+6=105 sans compter les nombres comportant un zéro. Pour ceux qui comportent un zéro ( 120, 240, 360, 480 ) cela fait 4 x 4 possibilités car le zéro ne peut pas se trouver en première position.
Soit au total 105+16=121.

Prochaine énigme de suite

Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 06:43:35.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !