Inscription / Connexion Nouveau Sujet
Niveau 2 *
Partager :

Challenge n°31**

Posté par
puisea Posteur d'énigmes
03-11-04 à 19:53

Les côtés d'un triangle équilatéral BKN mesurent 6. Soient I, I', I'' les milieux respectifs de [BK], [KN] et [NB].

On ôte du triangle les portions de disque de centre B, K et N de rayon BI.

Quelle est l'aire de la surface restante ?

Bonne chance à vous

Challenge n°31

Posté par
ofool
re : Challenge n°31** 03-11-04 à 20:03

perduBonsoir,


   Il reste (30-9)/2.

Dans "petite enigme pour la route j'avais juste

Posté par
clemclem Posteur d'énigmes
re : Challenge n°31** 03-11-04 à 20:14

perduBonjour,
Alors l'aire du triangle est égal à : BI'*NK=\sqrt{45}*6
L'aire de la surface restante est égale à \sqrt{45}*6 - \pi*3^2\approx 12 (unité d'aire)

Enfin je crois...

Posté par BioZiK (invité)re : Challenge n°31** 03-11-04 à 20:52

Calculons l'air du triangle:

La hauteur du triangle est trouvée par le théorème de pythagore. BN² = BI² + IN².
d'où IN = racine carrée(BN² - BI²)= racine carrée(36-9)= racine carrée(27)= 3 * racine(3)

d'ou l'aire du triangle est (base*hauteur)/2=(6*3*racine(3))/2=9*racine(3)

On calcule l'aire d'une portion.
Une portion représente 1/6 ème de l'aire d'un cercle. Or l'aire d'un cercle est Pi*r²=Pi*9 ici.
D'où l'aire d'une portion est Pi*3/2.
On a 3 portions donc l'aire a retirer est Pi*9/2

On a donc l'aire de la surface restante qui vaut
9*racine(3)-Pi*9/2 = 9*(racine(3)-(Pi/2)) = 1.45129033 (environ)

Posté par Ben (invité)re : Challenge n°31** 03-11-04 à 20:53

Aire du Triangle:
Atriangle=(62*3)/4
Atriangle=93
Calcul de l'aire de l'arc de cercle IBI''
R=6/2=3
L'aire du cercle= R2
Hors le triangle intercepte 60° du cercle soit 1/6
Donc l'aire de larc de cercle est égale à:
Aarc de cercle=(9)/6
Aarc de cercle=(3/2)*
Hors il y a 3 fois cet arc de cercle:
Donc
Aire restante=93-(9/2)
Aire restante=1.45

Posté par
dad97 Correcteur
re : Challenge n°31** 03-11-04 à 21:00

gagnéBonsoir,

Ma réponse : 4$9\times(\sqrt{3}-\frac{\pi}{2})

Salut

Posté par minotaure (invité)re : Challenge n°31** 03-11-04 à 21:24

gagnéaire du triangle BNK : NK*BI'/2=6*3*(racine(3))/2=9*racine(3)

reste a enlever les portions de disque.

l'angle NKB est egal a Pi/3 donc une portion correspond a 1/6 du disque.le disque a un rayon de 3.
aire d'un disque 9*Pi
d'ou une portion a une aire de 3*Pi/2
or il y a 3 disques donc on doit retirer a l'aire du triangle 9*Pi/2
RESULTAT : 9*racine(3)-9*Pi/2
en esperant que ce soit ca...

Posté par frozen (invité)re : Challenge n°31** 03-11-04 à 21:28

gagnéPour trouver l'aire restante, on soustrait l'aire des secteurs de disque à l'aire du triangle.

Aire du triangle :
------------------
Soit x la longeur du segment [BI'] (donc la hauteur du triangle)

De Pythagore : [BN]^2 = [NI']^2 + x^2
On trouve : x = sqrt(27)  (raçine carrée de 27).

On calcule l'aire du triangle :
aire = [NK]*x / 2 = 18 * sqrt(3) / 2
                    ================

Aire des secteurs de disque :
-----------------------------

On sait que la somme des angles d'un triangle vaut toujours PI et on a 3 secteurs de disque d'angle PI/3, donc au total un demi disque.

aire =  9 * PI / 2
==================


Donc on peut finalement calculer l'aire restante :
Aire restante = (18 * sqrt(3) / 2) - (9 * PI / 2) = 1.451290327...                                                        

Posté par lapinou (invité)Re: Challenge 31 03-11-04 à 21:45

Bonjour,

Aire du triangle= 1/2*27*6

Aire de la portion d'un disque d'angle Pi/3= (*32)/6

Aire restante = 1/2*27*6 - 3*(*32)/6
=1/2*27*6 - *(*32)/2
=1,451

Posté par zineb (invité)re : Challenge n°31** 03-11-04 à 22:07

coucou ! j'ose me lancer bien que j'ai des doutes sur des formules apprises il y a trèèès longtemps

bon alors aire de la surface bleue est égale à l'aire du triangle moins 3 fois l'aire d'un sixième de disque de rayon 3

l'aire du triangle est 93
l'aire d'une portion de disque d'angle /3 est /6*r²

l'aire de la surface bleue est
A=93-3*(/6)*9
A=9(3-/2)

en esperant que ca va aller à peu près ...

ciao

Posté par la_fureur (invité)re : Challenge n°31** 03-11-04 à 22:13

perduSalut
On fait:
A(bkn)-3*A(portion de disque)

soit
(BI'*NK)/2 - 3* (2*Pi*R)/6   car un angla du triangle vaut 60° soit l'aire d'une portion= aire du cercle/6.

=> (racine(6²-3²)*6)/2  -  3*((2*Pi*3)/6)
=(racine(27)*6)/2 -3*Pi
=6.16

Ma réponse est donc environ égale à 6.16

Posté par zonotope (invité)re : Challenge n°31** 03-11-04 à 22:14

gagnéL'idée est de calculer d'abord l'aire du triangle et ensuite lui soustraire l'aire des 3 secteurs circulaires.

Aire du triangle : (base * hauteur)/2
base = |NK| = 6

On utilise le théorème de pythagore pour calculer la hauteur : hauteur^2 + |IK|^2 = |NK|^2
=> hauteur = sqrt(|NK|^2 - |IK|^2) = sqrt(27) = 3 * sqrt(3)

Donc l'aire du triangle vaut : At = 9 * sqrt(3)

Aire des secteurs circulaires : comme le triangle est équilatéral, ses 3 angles ont la même valeur : Pi/3
On remarque que calculer la somme des 3 secteurs revient à calculer l'aire d'un demi-disque de rayon |IK|
=> As = (Pi * |IK|^2)/2 = (9 * Pi)/2

Finalement, l'aire cherchée vaut At - As = 9 * sqrt(3) - (9 * Pi)/2 = 1.45129

Posté par titimarion (invité)re : Challenge n°31** 03-11-04 à 22:29

perduL'aire de la surface restant correspond à l'aire du triangle - l'aire des 3 portion de cercle donc l'aire dutriangle - 1/2 l'aire du cercle
Aire du triangle=15
En effet base=6
hauteur = \sqrt{6^2-3^2}=5

Aire du cercle \pi r^2=9\pi
Donc aire du reste=
15-\frac{9\pi}{2}et il n'y a pas d'unité car kes côtés du triangle mesure 6 mais on ne sait pas quoi.

Posté par claireCW (invité)re : Challenge n°31** 04-11-04 à 00:05

gagnéLa hauteur du triangle est de 3.racine(3)
L'aire du triangle est donc de 9.racine(3)

L'angle NBK est de pi/3, donc l'aire de la portion de disque I''BI est de 1/6 de la surface totale, soit 1/6 * pi*3² = 3pi/2.
C'est la même pour les deux autres portions de disque.

L'aire de la surface restante est de 9.racine(3) - 9pi/2 = 9 (racine(3) - pi/2)

Posté par pinotte (invité)re : Challenge n°31** 04-11-04 à 03:17

gagnéL'aire du triangle est de 3\sqrt{27}. Les trois secteurs de cercle sont équivalentes à un demi-cercle de rayon r=3. L'aire du demi-cercle est de \frac{9}{2}. On trouve l'aire restante en soustrayant l'aire des secteurs de cercle de l'aire du triangle. On trouve ainsi que l'aire restante est d'environ 1,45 u2.

Posté par
franz
re : Challenge n°31** 04-11-04 à 09:51

gagnéL'aire résiduelle vaut 9. \(\sqrt 3-\frac \pi 2\)\approx 1,45

explication
L'aire du triangle équilatéral vaut \frac 1 2 \(\frac {\sqrt 3} 2 .6\) .6=9. {\sqrt 3}\approx 15,59
L'aire recouverte par les secteurs circulaires vaut 3*(\frac 1 2 \frac \pi 3 .3^2)=\frac {9 \pi} 2}\approx 14,13

Posté par Graubill (invité)re : Challenge n°31** 04-11-04 à 12:06

gagnéAire du triangle - 3* Aire du secteur de cercle.

Aire du triangle = 6 * (3²+6²) / 2
Aire du triangle = 93

Aire du secteur = (/3)*3²/2
Aire du secteur = 3*/2

A=93 - 9*/2

Posté par did75 (invité)re : Challenge n°31** 04-11-04 à 15:30

9(\sqrt{3}-\frac{\pi}{2})
Soit environ 1,45

Posté par
Belge-FDLE
re : Challenge n°31** 04-11-04 à 19:20

gagnéSalut à tous ,

Ma réponse est : L'aire de la surface restante est égale à 2$\rm~9(\sqrt{3}-\frac{\pi}{2})~\approx~~1,45129.

RAISONNEMENT :
* Calcul de l'aire du triangle BKN :
Si les côté du triangle sont de 6, alors on en déduit facilement que la moitié des côté est 3. Du fait que BKN est un triangle équilatéral, ses médianes et hauteurs (ainsi que ses bissectrices et médiatrices, mais cela ne nous intéresse pas ) sont confondues "2 à 2" (ou "4 à 4"si on prend en compte la parenthèse ).
Ainsi, I' est le pied de la hauteur issue de B, du triangle BKN.
Donc, BKI' et BNI' sont deux triangles rectangles qui une hypothènuse de longueur 6 et un côté de longueur 3, leur dernier côté étant constitué par BI' dont on va à présent calculer la longueur grâce au théorème de pythagore :

2$\rm~\array{rcl$BI'^2+3^2&=&6^2\\BI'&=&\sqrt{36-9}\\BI'&=&\sqrt{27}\\BI'&=&3\sqrt{3}

Conclu partielle : La hauteur BI' a une longueur de 2$3\sqrt{3}.

On peut à présent calculer facilement l'aire A du triangle BKN en appliquant la formule :

2$\rm~\array{rcl$A&=&\frac{h\times~c}{2}\\A&=&\frac{3\sqrt{3}\times~6}{2}\\A&=&9\sqrt{3}}

Conclu partielle : L'aire de BKN est égale à 9\sqrt{3}.


** Calcul de l'aire enlevée :
Les trois disques ont même rayon (càd 3). Leur aire est donc la même.
De plus, comme BKN est équilatéral, chacun de ses angles est égal à 60 degrés.
Ainsi on soustrait à l'aire du triangle, celle de trois secteurs angulaires de 60 degrés de même rayon (3).
Or, 3*60=180 degrés.
Ainsi, on soustrait à l'aire de BKN la moitié de l'aire d'un disque de rayon 3.
Or cette aire de disque est, comme nous le savons, égale à :

2$\rm~\array{rcl$A&=&\pi\times~r^2\\A&=&\pi\times~3^2\\A&=&9\pi}

Conclu partielle : On soustrait à l'aire de BKN  2$9\frac{\pi}{2}.


*** Calcul de l'aire restante :
On peut calculer à présent facilement l'aire restante :

2$\rm~\array{rcl$A_r&=&9\sqrt{3}-9\frac{\pi}{2}\\A_r&=&9(\sqrt{3}-\frac{\pi}{2})~\approx~~1,45129}

Voili, voilou .
Bonne chance à tous , et merci à Puisea pour cette énigme

En espérant avoir juste ,
À +

Posté par marco77 (invité)resolution de l enigme 04-11-04 à 22:41

perduJe suis nouveau sur le site et je vais poster ma premiere reponse.

on a donc NI'=NI"=KI'=KI=BI"=BI=3 car BKN equilateral et I,I',I" milieux des cotes avec BK=6.

Les angles B N et K sont egaux a pi/3 car ce sont les angles d'un triangle equilateral.

Donc les portions de disque delimitees par N,I",I' ainsi que les 2 autres ont une aire egale a 1/6 de l'aire des cercles de rayon BI.Donc elles sont egales a 1/6 de pi*(BI)^2 =pi*9.Donc la somme de ces 3 aires est (3/6)*pi*9
=(1/2)**9.

Or l'aire de BNK= (base*hauteur)/2=NK*BI' car I' milieu de Nk et BNK equilateral donc les mediatrices sont aussi hauteurs. On a BI'^2=BK^2 - I'K^2 :pythagore.

D'ou:
BI'=5.
Donc aire BNK=NK*BI'/2=6*5/2=15.

Donc l'aire coloriee est egale a 15-4.5.

Posté par
puisea Posteur d'énigmes
re : Challenge n°31** 05-11-04 à 07:34

Bravo à tous ceux qui ont particpé, beaucoup de bonne réponses dans l'ensemble, bravo !!

L'aire s'obtient en ôtant du triangle équilatéral BKN celle d'un demi disque de rayon BI = 3 :
\frac{1}{2}\times6\times6\times\frac{\sqrt3}{2}-\frac{1}{2}\times\pi\times3^2=9\times(\sqrt{3}-\frac{\pi}{2})

Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 06:50:13.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !