Inscription / Connexion Nouveau Sujet
Niveau 3 *
Partager :

Enigmo 254 : Le jeu mystérieux

Posté par
jamo Moderateur
26-10-11 à 10:21

Bonjour tout le monde,

trois amateurs de cartes se réunissent régulièrement pour se divertir à l'aide de toutes sortes de jeux.

Voici le fonctionnement pour les gains de l'un de leurs jeux :
- chaque joueur débute le jeu avec 0 points ;
- à la fin d'une partie, on obtient un classement des trois joueurs (pas de possibilité d'ex-aequo) ;
- le 1er au classement reçoit a points, le 2nd b points, et le 3ème c point(s), avec a>b>c>0 (de plus, a, b et c sont entiers) ;

Au bout d'un certain nombres de parties (plus d'une seule), voici où en sont les scores pour les trois joueurs : 29, 15 et 11 points.

Question : combien de parties ont été jouées, et quels sont les points a, b et c attribués aux joueurs selon le classement à une partie ?

Vous donnerez toutes les possibilités( si vous pensez qu'il en existe au moins une, bien entendu).

Bonne recherche !

(Image : les joueurs de cartes, peint par Otto Dix)

Enigmo 254 : Le jeu mystérieux

Posté par
Nofutur2
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 11:12

perduJe ne trouve aucune solution !!!

Posté par
jonjon71
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 11:23

gagnéBonjour,

voici ma réponse :

5 parties ont été jouées

avec a=7, b=3 et c=1.

Ainsi :

Le premier joueur a fini 4 fois 1er, 0 fois 2eme et 1 fois 3eme soit 4*7+1*1=29 points.
Le deuxième joueur a fini 0 fois 1er, 5 fois 2eme et 0 fois 3e soit 5*3=15 points.
Le troisième joueur a fini 1 fois 1er, 0 fois 2eme et 4 fois 3e soit 1*7+4*1=11 points.

Je n'ai pas trouvé d'autres solutions.

Merci!

Posté par
manpower
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 11:34

gagnéBonjour,

il existe probablement énormément de possibilités si les points attribués ne sont pas entiers...

Sinon, une première recherche donne un total nécessaire de 5 parties.
Les points attribués pouvant être:
a=5,b=4,c=2
a=6,b=3,c=2
a=6,b=4,c=1
a=7,b=3,c=1
a=8,b=2,c=1

Les 3 premiers cas se traitent vite avec l'impossibilité de réaliser un total de 29.
Reste donc les deux derniers où il faut fouiller un peu plus histoire de ne rien oublier.

Sauf erreur, le dernier est stérile.

Je trouve alors deux configurations (variantes):
Joueur n°: Premier/Seconde/Troisième

J1:4-0-1
J2:0-5-0
J3:1-0-4

J1:4-0-1
J2:1-2-2
J3:0-3-2

La réponse finale est donc 5 parties avec respectivement 7 pts, 3pts et 1pt au classement pour le premier, second et troisième.
soit 5 parties et a=7, b=3 et c=1.

Merci pour l'enigmo.

Posté par
totti1000
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 11:40

gagnéSalut jamo,

je ne trouve qu'une seule solution :
5 parties avec la répartition de points suivante à chaque partie :
a=7, b=3 et c=1.


Merci pour l'énigme, et bonne fin de vacances...

Posté par
totti1000
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 12:51

gagnéRe,

Soient a, b et c les points attribués à chaque fin de partie. Supposons qu'il y ait eu n parties.
On remarque que 55 points ont été distribués en tout (29+15+11).

On a alors : n(a+b+c)=55,
donc n divise 55.

On a quatre possibilités :
n=1, impossible car on sait que plus d'une partie a été jouée.

n=5.

n=11, impossible car il faudrait répartir 5 points par partie entre les trois joueurs, or il faut au moins un point pour le dernier et que les trois scores soient différents, soit au minimum 1+2+3=6 points.

n=55 , impossible car il faudrait répartir 1 seul point par partie entre les trois joueurs.


Reste donc un seul cas, celui où l'on dispute 5 parties.
Il faut donc repartir 11 points par partie,
on a alors 5 cas :
a=8, b=2 et c=1
a=7, b=3 et c=1
a=6, b=4 et c=1
a=6, b=3 et c=2
a=5, b=4 et c=2

Cas n°1 : a=8, b=2 et c=1
On ne peut pas faire 11 avec une somme de cinq termes (parmi 1, 2 et 8), car si on met un 8, on ne pourra pas faire 3 avec une somme de quatre termes (parmi 1 et 2).
Donc il n'y a pas de 8, et du coup on ne peut faire 11 avec une somme de quatre termes (parmi 1 et 2). IMPOSSIBLE.

Cas n°2 : a=7, b=3 et c=1
Possible, par exemple : 1+7+7+7+7=29, 3+3+3+3+3+3=15 et 7+1+1+1+1=11.

Cas n°3 : a=6, b=4 et c=1
On remarque que pour faire 29 avec un somme de cinq termes (parmi 1, 4 et 6) il faut au moins quatre 6, et il manquerait 5. IMPOSSIBLE.

Cas n°4 : a=6, b=3 et c=2
Semblable au cas n°3. IMPOSSIBLE.

Cas n°5 : a=5, b=4 et c=2
De la même façon on ne pourra pas faire 29 avec une somme de cinq termes (parmi 2, 4 et 5), on remarque même qu'on ne pourra pas faire plus de 25 (=5+5+5+5+5). IMPOSSIBLE.


Au final, on a donc une seule solution , celle ou 5 parties ont été jouées et où a=7, b=3 et c=1.

Bonne journée.

Posté par
dpi
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 12:53

gagnéBonjour,

Il a été joué 5 parties en attribuant
7 points au premier
3 au second et 1 au dernier

exemple de scores

j1 j2 j3
1  2  3 ---> 7   3   1
1  2  3 ---> 14  6   2
1  2  3 ---> 21  9   3
1  2  3 ---> 28  12  4
3  2  1 ---> 29  15  11

Posté par
plumemeteore
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 13:09

gagnéBonjour Jamo.
Il y a eu cinq parties, rapportant chacune 7 points à son gagnant, 3 points à son second et 1 pointà son troisième.
En appelant les joueurs G(agnant), S(econd) et P(erdant) suivant leurs places au classement général, les résultats suivants sont possibles :
GSP
GSP
GSP
GSP
PSG
ou
GSP
GSP
GPS
GPS
SPG

Posté par
evariste
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 13:30

gagnéUne seule solution :

5 partie jouées
a=7
b=3
c=1

Posté par
Tof
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 14:09

gagnéBonjour,

Je pense (et j'espère) qu'il n'y a qu'une possibilité :
ils ont joué
5 parties
dont les points valaient
(a=7)>(b=3)>(c=1)

Normalement, j'ai pris mon temps, je me suis relu et j'ai répondu à toute la question...

Il faut encore que ce soit juste

Merci pour l'énigme,

Tof.

Posté par
LO_RV
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 17:35

gagné5 parties ont été jouées, et les trois scores possibles sont dans l'ordre a=7, b=3 et c=1.

Le nombre de parties et la somme des gains a+b+c divisent la somme 29+15+11 = 55. Il en résulte que ces deux nombres sont soit 1, soit 5, soit 11, soit 55.
Après avoir éliminé les cas impossibles, il ne reste que 5 pour le nombre de parties jouées.

Posté par
pdiophante
Enigme n°254 26-10-11 à 17:36

gagnéBonjour,

Réponse: 5 parties ont été jouées avec a = 7, b = 3 et c = 1.

A chaque partie, la somme totale des points alloués aux trois joueurs est égale à s = a+b+c qui divise donc 29 + 15 + 11 = 55 dont la factorisation est 55 = 5*11.

s peut donc prendre 3 valeurs = 1, s = 5 et s = 11.
Le cas s=1 est trivialement exclu.
Le cas s=5 est aussi à exclure car a>b>c>0 entraîne a+b+c>=3+2+1=6.
Le seul cas possible est donc s = 11. Il en découle que 5 parties ont été jouées.

Les partitions de l'entier 11 selon les triplets ordonnés (a>b>c>0)sont les suivantes (8,2,1), (7,3,1), (6,4,1), (6,3,2) et (5,4,2).
On vérifie aisément que les trois derniers triplets (6,4,1), (6,3,2) et (5,4,2)sont impossibles car le score le plus élevé de 29 est inaccessible.Par exemple :4*6 + 1*4 = 28<29. Il en est de même du triplet (8,2,1) avec lequel 4*8 + 1*1 = 33 >29 et 3*8 + 2*2 = 28 <29.
Seul le triplet (7,3,1) est à retenir et l'on obtient:
29 = 4*7 + 1*1, 15 = 1*7 + 2*3 + 2*1 et 11 = 3*3 + 2*1.

Posté par
caylus
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 20:22

perduBonjour Jamo,

Chouette un 3 étoiles:
=> problème impossible: pas de solution
à cause de a>b>c>0.

Posté par
caylus
re : Enigmo 254 : Le jeu mystérieux 26-10-11 à 20:26

perduUne explication:


Sauf erreur, sans connaître la théorie de ce problème:



le joueur n°1 a été
k1 fois en position 1
k2 en position 2
k3 en position 3.
k1+k2+k3=n
k1.a+k2.b+k3.c=29 (1)


le joueur n°2
m1 fois en position 1
m2 en position 2
m3 en position 3.
m1+m2+m3=n
m1.a+m2.b+m3.c=15 (2)

le joueur n°3
n-k1-m1 fois en position 1
n-k2-m2 en position 2
n-k3-m3 en position 3

n-k1-m1+n-k2-m2+m-k3-m3=3n-n-n=n (ok)
(n-k1-m1).a+(n-k2-m2).b+(n-k3-m3).c=11
=>n(a+b+c)=55
=>n=5              ou   n=11
et (a+b+c)=11 ou (a+b+c)=5

nb parties= 5
K1,K2,K3,M1,M2,M3,A,B,C
1  4  0  3  0  2 | 5  6  0 |

nb parties= 11
K1,K2,K3,M1,M2,M3,A,B,C
2  9  0  5  2  4 | 1  3  1 |
2  9  0  6  2  3 | 1  3  1 |
2  9  0  7  2  2 | 1  3  1 |
2  9  0  8  2  1 | 1  3  1 |
2  9  0  9  2  0 | 1  3  1 |
3  7  1  5  3  3 | 0  4  1 |
4  7  0  6  1  4 | 2  3  0 |
5  6  0  7  2  2 | 1  4  0 |
7  0  4  5  6  0 | 3  0  2 |
9  0  2  2  8  1 | 3  1  1 |
9  0  2  2  9  0 | 3  1  1 |
9  1  1  5  6  0 | 3  0  2 |
9  1  1  2  8  1 | 3  1  1 |
9  1  1  2  9  0 | 3  1  1 |
9  2  0  2  8  1 | 3  1  1 |
9  2  0  2  9  0 | 3  1  1 |
Merci pour l'énigmo.

Posté par
buck92
enigmo 254 26-10-11 à 21:45

gagnéBonjour,
5 parties, avec pour points attribués 7, 3 et 1.

Je ne comprends pas les 3 étoiles attribuées.
Soit n le nombre de parties jouées.
n(a+b+c) = le nombre de points distribués = 11+15+29 = 55 =5 * 11
Nous savons aussi que a+b+c >= 1+2+3 = 6.
Donc il y a eu 5 parties et a+b+c = 11.
On en déduit que c < 3 puisque si c >=3, a+b+c > 11.
il ne reste plus qu'à essayer c=1, b=2 ou c=1 b=3, c=1 b=4, c=2 b=3 et c=2 b=4 avec a=11-(a+b)
On voit immédiatement que pour faire 29 en 5 coups, il n'y a qu'une solution.
.... si je ne me suis pas complètement trompé !

Merci pour l'énigme.

Posté par
Pierre_D
re : Enigmo 254 : Le jeu mystérieux 27-10-11 à 00:27

gagnéBonjour Jamo,

Pour les variables demandées, je ne trouve qu'une solution possible :  n = 5 parties  ;  a = 7  ;  b = 3  ;  c = 1

Deux configurations différentes des 5 parties conduisent à ce même résultat :
- deux parties PDT, deux parties PTD, une partie DTP
- ou quatre parties PDT, une partie TDP
où P est le joueur à 29 points, D le joueur à 15 points, T le joueur à 11 points.

Posté par
Pantagruel
re : Enigmo 254 : Le jeu mystérieux 27-10-11 à 02:29

gagnéBonjour tout le monde
- Je propose:  5 parties jouées
                  : 11 points par partie avec a=7; b=3; c=1
Solution/1
  (0*7)+ (3*3)+ (2*1) = 11
  (1*7)+ (2*3)+ (2*1) = 15  
  (4*7)+ (0*3)+ (1*1) = 29
Solution/2
  (1*7)+ (0*3)+ (4*1) = 11
  (0*7)+ (5*3)+ (0*1) = 15  
  (4*7)+ (0*3)+ (1*1) = 29

Posté par
geo3
re : Enigmo 254 : Le jeu mystérieux 27-10-11 à 10:37

perduBonjour
Avec la condition a > b > c > 0 cela me paraît impossible
Peut-être un poisson (en plus??)
A+

Posté par
o-k
re : Enigmo 254 : Le jeu mystérieux 27-10-11 à 14:40

gagnéD'après moi :
5 parties
a=7 ; b=3 ; c=1 !

Posté par
kioups
re : Enigmo 254 : Le jeu mystérieux 27-10-11 à 15:52

gagnéA chaque partie, a+b+c points sont distribués.

Le score total des joueurs est de 55 points. Or 55=5x11.

Soit, à chaque partie, sont distribués soit 5 points, soit 11 points.

Or, comme a>b>c>0, le total minimum est 6. Donc le total distribué à chaque partie est 11 points.

Il y a donc eu 5 parties en tout.

Cherchons maintenant la répartition possible des points.

8-2-1 : C'est impossible de faire 29 points en 5 parties (4x8=32 et 3x8+2x2=28). On oublie :
7-3-1 : 29=7x4+1 - 11=1x4+7 - 15=3x5. Ca fonctionne !
6-4-1 : Impossible de faire 29 en 5 parties (6x5=30 et 6x4+4=28)
6-3-2 : Impossible de faire 29 en 5 parties (6x5=30 et 6x4+3=27)
5-4-2 : Impossible de faire 29 en 5 parties (5x5=25)

Conclusion : il n'y a qu'une solution. 5 parties ont été jouées, le premier reçoit 7 points, le deuxième 3 points et le troisième 1 point.

Posté par
castoriginal
Enigmo 254 : Le jeu mystérieux 27-10-11 à 19:34

gagnéBonsoir,

à chaque partie on attribue un nombre de points qui vaut a+b+c
Avec n parties, le total des points distribués vaut n(a+b+c) = 29+15+11 = 55
55 n'est décomposable qu'en 11*5. La somme a+b+c vaut au minimum 6; donc il y a eu 5 parties jouées
a+b+c = 11   on a les décompositions de 11 suivantes : 8+2+1 ; 7+3+1 ; 6+4+1 ; 6+3+2 ; 5+4+2
Seule la décomposition 7+3+1 permet d'obtenir 29 en cinq parties;donc a=7 , b=3 , c=1
on a donc le tableau récapitulatif possible suivant:

Enigmo 254 : Le jeu mystérieux

Bien à vous

Posté par
vivelile
re : Enigmo 254 : Le jeu mystérieux 27-10-11 à 20:31

gagnéBonsoir

Je propose 5 parties avec a=7, b=3 et c=1

Le joueur dont le score est 29, a été quatre fois premier et une fois troisième:
4\times 7+1=29

Le joueur dont le score est 15, a été une fois premier , deux fois deuxième et deux fois troisième:
7+2\times 3+2\times 1=15

Le joueur dont le score est 11, a été trois fois deuxième et deux fois troisième:
3\times 3+2\times 1=11

Merci pour l'énigme.

Posté par
ksad
re : Enigmo 254 : Le jeu mystérieux 28-10-11 à 09:35

gagnéBonjour,

Procédons par élimination:
Le total des points distribués étant égal à 55, il ne peut y avoir eu que 5 parties à 11 points chacune, ou 11 parties à 5 points chacune. La condition a > b > c > 0 exclut la seconde combinaison puisqu'à chaque partie, au moins 6 points seront distribués.

--> 5 parties ont été jouées.

Selon les conditions exprimées, les 11 points ne pourront être répartis que comme l'une (ou plusieurs) des possibilités suivantes:
  (8,2,1); (7,3,1); (6,4,1); (6,3,2); (5,4,2)
Etant donné que le vainqueur engrange 29 points en cinq parties, cela signifie que a doit être strictement supérieur à 5, ce qui exclut la dernière proposition.

On constate vite qu'il est impossible d'atteindre 29 avec 5 scores issus de (8,2,1) : 3x8 = 24, reste 5 points à faire avec 1 et 2 en deux coups. Pas possible.
De même, pas moyen d'atteindre 29 avec 5 scores issus de (6,4,1) ou (6,3,2).
On élimine donc toutes ces solutions.

Reste (7,3,1). On vérifie:

29 = 7,7,7,7,1
15 = 1,1,3,3,3
11 = 3,3,1,1,1

ce qui correspond bien au problème posé.

--> on a joué 5 parties pour (7,3,1) points à chaque donne.

Posté par
mohamedarnaout
re : Enigmo 254 : Le jeu mystérieux 28-10-11 à 18:39

perdua>b>c  

soit x le nombre des parties
et a chaque partie il y a un ganyant de a ,b et c
donc on a : a.x + b.x + c.x = 29 + 15 + 11 = 55
donc  x = 55  / ( a + b + c )

or 55 = 5 . 11  et a,b,c,x sont des entiers

donc  a + b + c = 11  et x = 5 parties

et  ( a , b , c )  appartient a {( 8 , 2 , 1 ),( 6 , 3 , 2 )}

Posté par
Bisam
re : Enigmo 254 : Le jeu mystérieux 29-10-11 à 17:08

gagnéIl n'y a que 2 possibilités détaillées ci-dessous. (On ne tient pas compte de l'ordre des parties)

Dans chaque cas, 5 parties ont été jouées, a=7, b=3 et c=1.

On notera (x,y,z) le résultat d'une partie, où x, y et z sont le nombre de points gagné par le 1er, le 2ème et le 3ème joueur.

1ère possibilité :
4 parties ont eu pour résultat (7,3,1) et la 5ème a eu pour résultat (1,3,7).

2ème possibilité :
2 parties (7,3,1), 2 parties (7,1,3) et 1 partie (1,7,3).


Pour le prouver, on remarque que 55 points ont été distribués en tout. Donc a+b+c divise 55.
Or a>b>c>0 donc a+b+c>=3+2+1=6. Donc a+b+c=11 ou a+b+c=55, mais ce dernier cas est exclu car plus d'une partie a été jouée.
Donc a+b+c=11 et 5 parties ont été jouées.

Les points se répartissent donc de l'une des façons suivantes :
8,2,1
7,3,1
6,4,1
6,3,2
5,4,2
Mais pour la première et les 3 dernières possibilités, on voit facilement qu'il est impossible d'obtenir un score total de 29 au bout de 5 parties.
Donc a=7, b=3 et c=1.
La seule façon d'obtenir 29 points est pour le premier joueur de gagner 4 fois et d'être une fois 3ème.
Il ne reste plus qu'à tester les possibilités d'obtenir 15 points pour le second joueur pour conclure.

Posté par
LeDino
re : Enigmo 254 : Le jeu mystérieux 29-10-11 à 20:58

gagnéBonjour,

La rencontre s'est jouée en 5 parties, avec des scores de 7, 3, et 1.

Explication :
Le total des points s'élève à 55, décomposable en 5x11.
Avec "n" le nombre de parties, on a donc : n*(a+b+c) = 5 * 11
Comme a>b>c>0, a+b+c est plus grand que 5.
Et donc :  n = 5  et  a+b+c = 11
Il y a cinq façons de décomposer 11 en 3 nombres a,b,c.
Seule la combinaison 7+3+1 permet d'atteindre les scores obtenus.

Posté par
torio
re : Enigmo 254 : Le jeu mystérieux 30-10-11 à 18:12

gagné5 parties

a = 7
b = 3
c = 1


A+
Torio

Posté par
singe3
re : Enigmo 254 : Le jeu mystérieux 31-10-11 à 13:57

perduPlus d'un seule partie ne veut pas dire strictement plus d'une donc la réponse une seule partie ça fonctionne

a=29
b=15
c=11

Et voilà
Un peu facile quand même

Posté par
kemlicz
Re Enigmo 254 31-10-11 à 15:04

gagnéBonjour :
une seule possibilité : 5 parties avec 1 pt, 3 pts et 7 pts comme répartition de points.

le joueur avec 11 pts a terminé 2 fois 3ème, 3 fois 2ème et 0 fois 1er.
le joueur avec 15 pts a terminé 2 fois 3ème, 2 fois 2ème et 1 fois 1er.
le joueur avec 29 pts a terminé 1 fois 3ème, 0 fois 2ème et 4 fois 1er.

Merci pour cette énigme

Posté par
LEGMATH
re : Enigmo 254 : Le jeu mystérieux 31-10-11 à 18:35

gagnéBonsoir jamo ,

5 parties ont été jouées,
a = 7
b = 3
c = 1

Merci.

Posté par
Judeau
re : Enigmo 254 : Le jeu mystérieux 01-11-11 à 19:11

gagnéBonjour,

Je trouve comme unique réponse que 5 parties ont été jouées avec a=7, b=3 et c=1.

Merci pour l'énigme.

Posté par
kotaryu
re : Enigmo 254 : Le jeu mystérieux 02-11-11 à 00:59

gagnéNombre de parties = 5
a = 7
b = 3
c = 1

Posté par
Tersaken
re : Enigmo 254 : Le jeu mystérieux 02-11-11 à 20:26

gagnéDifficile d'être sur de soi, cela dit, voici mon raisonnement :

Trouver une solution au problème revient à trouver une matrice 3x3 telle que la somme des coefficients de chaque ligne et de chaque colonne est égale au nombre de parties jouées (n).
Ainsi, en guise d'exemple la matrice suivante

 \\ \begin{pmatrix}
 \\ 0 & 3 & 0\\
 \\ 2 & 0 & 1\\
 \\ 1 & 0 & 2
 \\ \end{pmatrix}
 \\
répond à ce critère.
Cette matrice multipliée à un vecteur (a,b,c) est égale au vecteur (29,15,11).

Si on additionne chacune des lignes de cette matrice, on tombe sur une relation du type

 (a+b+c)*n = 29+15+11 = 55 = 11*5

Il y a donc soit 5, soit 11 parties jouées.

S'il y a 11 parties jouées,

a+b+c = 5, mais vu que a > b > c, cela n'est pas possible.

On trouve finalement deux solutions avec 5 parties jouées.
Avec

a=7
b=3
c=1

La 1er solution est

Le joueur 1 a gagné 4 parties, et en a "perdue" une.
Le joueur 2 a gagné 1 partie , et en a "perdue" deux, et a fini deux fois 2ème.
Le joueur 3 a gagné 0 partie , et en a "perdue" deux, et a fini trois fois 2ème.

La solution 2 est


Le joueur 1 a gagné 4 parties, et en a "perdue" une.
Le joueur 2 a gagné 0 partie , et en a "perdue" 0, et a fini 5 fois 2ème.
Le joueur 3 a gagné 1 partie , et en a "perdue" 4, et a fini 0 fois 2ème.

J'en ai peut être oublié ... ^_^

Posté par
lesmamas
re : Enigmo 254 : Le jeu mystérieux 03-11-11 à 00:55

gagnéune seule possibilité
5 parties jouées
7 points pour le gagnant
3 pour le second
1 pour le dernier

Posté par
ming
énigme 03-11-11 à 00:59

gagnéBonjour

A chaque partie, le gain est constant : a+b+c.In fine, le gain total est 55.

Nécessairement le nombre de parties doit être 5 et a+b+c= 11 ce qui donne,

=============== solution n° 1 ===============
nb de parties : 5
a=7 b=3 c=1
1er 4 0 1
2e  0 5 0
3e  1 0 4
=============== solution n° 2 ===============
nb de parties : 5
a=7 b=3 c=1
1er 4 0 1
2e  1 2 2
3e  0 3 2

Posté par
franz
re : Enigmo 254 : Le jeu mystérieux 04-11-11 à 09:52

gagnéQuand on additionne les scores des 3 joueurs, on obtient un nombre correspondant au total des points distrubués par partie (a+b+c) multiplié par le nombre de parties n soit :
n(a+b+c)=29+15+11=55
Comme 0<c<b<a     ,      a+b+c>6
D'autre part les trois joueurs ont joué plus d'une partie donc n>1 d'où a+b+c<55.

Le seul diviseur de 55 qui réponde aux deux conditions est a+b+c=11
Les joueurs auront donc joué \red n=5 parties

Pour obtenir 29 points en 5 parties, cela implique que a\geqslant 6. Par ailleurs, \left\{\begin{array}{ccc}a+b+c&=&11\\a>b>c&\geqslant &1\end{array}\right.\;\Longrightarrow\;a\leqslant 8

\bullet \;a=6\;\Longrightarrow\;b=5 \; et \; c=0 impossible (c>0)
\red \bullet \; a=7\;\Longrightarrow\;b=3 \; et\; c=1 (seul cas possible).(le 1° gagne 4 parties et finit une fois 3°, le 2° fini 5 fois deuxième et le 3° gagne la seule partie non gagnée par le 1° et finit 3° aux 4 autres parties)
\bullet \;a=8 ne permet pas d'obtenir 29 avec (b=2\;,\;c=1)

Posté par
1emeu
re : Enigmo 254 : Le jeu mystérieux 07-11-11 à 15:22

gagnéBonjour,

je ne trouve qu'une solution (autre que la solution triviale avec 1 seule partie: a=29, b=15, c=11):

les joueurs ont joué 5 parties avec a=7, b=3, c=1

Merci pour l'énigme,
1emeu

Posté par
gauss59
re : Enigmo 254 : Le jeu mystérieux 07-11-11 à 22:45

gagnéIl n'y a qu'une seule solution :

Les 3 joueurs ont fait 5 parties. Le premier remporte 7 pts, le second en remporte 3, et le dernier en remporte 1.

Ici, le meilleur joueur est arrivé 4 fois premier et une fois dernier.
Le second joueur est arrivé 5 fois second.
Le dernier joueur est arrivé une fois premier et 4 fois dernier.

Posté par
pepegeo
solution enigme254 08-11-11 à 11:07

gagné55 pour trouver n entier on à 5 ou 11
mais 5 ne peut contenir a>b>c si a>0
donc n=5

a+b+c=11, soit des set de points
1,2,8 ou 1,3,7 ou 1,4,6 ou 2,3,6 ou 2,4,5
soit des nombre de partie premier, deuxième, dernier
5,0,0 ou 4,1,0 .... 0,5,0 ..... 0,0,5

Pour réaliser le score 11 pour le premier joueur il y a 4 combinaisons
Pour réaliser le score 15 pour le deuxième joueur il y a 5 combinaisons
Pour réaliser le score 29 pour le troisième joueur il n'y a qu'une combinaison:
4x premier, 0x milieu et 1x dernier avec les points avec combinaison de points 7,3,1

Ce qui ne permet plus qu'une fois premier soit 1 seule combinaison pour le deuxième avec ces points
1x premier, 2x milieu, 2x dernier

et est compatible pour le premier joueur avec combinaison:
Ox premier, 3x milieu, 2x dernier

Donc 5 parties et a=1, b=3, c=7,

Posté par
PIL
re : Enigmo 254 : Le jeu mystérieux 09-11-11 à 22:53

gagnéBonsoir jamo,

Je trouve une seule solution :  5 parties ont été jouées et les points attribués  sont  a = 7, b = 3 et c = 1.

Merci pour cette énigme !

Posté par
LittleFox
re : Enigmo 254 : Le jeu mystérieux 13-11-11 à 00:56

gagnéLe total des points vaut 55.
Il y a donc eu soit :
1 partie de 55 points : impossible puisque plus d'une seule partie
5 parties de 11 points
11 parties de 5 points : impossible puisque a>b>c>0 donc a+b+c > 1+2+3 = 6
55 parties de 1 points : impossible vu ci-dessus.

IL y a eu donc 5 parties de 11 points, ces 11 points se décomposent en (pour a,b,c) :
8,2,1
7,3,1
6,4,1
6,3,2
5,4,2

Seule la décomposition 7,3,1 permet de faire 29 points en 5 parties : 4a+c = 4*7+1 = 29.

Il y a donc eu 5 parties et a,b,c vaut respectivement 7,3,1.

C'est la seule possibilité.

Merci pour l'énigme

Posté par
Compress
Réponse à l'énigme 15-11-11 à 10:24

perduBonjour,

pour ma part :

- il y a eu 11 parties jouées
- les couples a, b et c solutions sont :
{8, 2, 1}
{7, 3, 1}
{6, 4, 1}
{6, 3, 2}
{5, 4, 2}

Cordialement.

Posté par
Compress
re : Enigmo 254 : Le jeu mystérieux 15-11-11 à 17:22

perduPardon mais en me relisant je vois que j'ai écris le mauvais nombre de parties jouées mais ce sont bien 5 parties jouées et le mix a, b, possible :

{8, 2, 1}
{7, 3, 1}
{6, 4, 1}
{6, 3, 2}
{5, 4, 2}

Cordialement.

Posté par
Chatof
5 parties et a=7 b=3 c=1 19-11-11 à 03:46

gagné5 parties
a=7 b=3 c=1  
     joueur1               joueur2                  joueur3
7x0+3x3+1x2=11    7x1+3x2+1x2=15    7x4+3x0+1x1=29
7x1+3x0+1x4=11    7x0+3x5+1x0=15    7x4+3x0+1x1=29

Posté par
edlecoch
Enigmo 254: Le jeu mystérieux 20-11-11 à 03:37

gagnéMatheuses et matheux, bonjour.

Ce problème ne présente qu'une possibilité de solution.

Nombre de parties jouées: 5

Points attribués aux joueurs selon le classement à une partie:
a = 7
b = 3
c = 1

Posté par
jamo Moderateur
re : Enigmo 254 : Le jeu mystérieux 20-11-11 à 11:27

Clôture de l'énigme

Pour ce petit problème d'arithmétique, la seule solution est la suivante :

il y a eu 5 parties, et les points attribués sont 7, 3 et 1.

Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 131:22:11.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !