Inscription / Connexion Nouveau Sujet
Niveau 3 *
Partager :

Joute n°95 : Nombres complices

Posté par
godefroy_lehardi Posteur d'énigmes
18-12-12 à 14:02

Bonjour à tous,

Attention : il y a deux questions (je le précise d'entrée de jeu pour ceux qui ne lisent jamais l'énoncé jusqu'au bout )

On appellera l'inversé d'un nombre celui obtenu en lisant le nombre initial de droite à gauche.
Par exemple, l'inversé de 25 est 52.

Deux nombres entiers positifs sont dits complices lorsque :
- chacun est différent de son inversé, de son complice et de l'inversé de son complice,
- le produit des deux nombres est égal au produit de leurs inversés.

Ainsi, les nombres 42 et 12 sont complices, car 42 24, 42 12, 42 21, 12 21, 12 24 et que 42 12 = 24 21 = 504.
Les paires (a;b) et (b;a) sont considérés comme non différentes.

Questions : Parmi les paires de nombres complices à 3 chiffres (ne commençant pas par zéro), quelles sont toutes celles pour lesquelles la différence entre les deux complices est la plus petite ? Et toutes celles pour lesquelles la différence entre les deux complices est la plus grande ?
Attention : il y a deux questions.

Joute n°95 : Nombres complices

Posté par
panda_adnap
re : Joute n°95 : Nombres complices 18-12-12 à 14:21

gagnéune solution pour chaque question
1) difference la plus petite (3): 201 204
2) difference la plus grande (860): 133 993

merci

Posté par
ksad
re : Joute n°95 : Nombres complices 18-12-12 à 14:25

gagnéBonjour

Pour la plus petite différence, j'ai seulement (201,204), pour une différence de 3.
En effet, les nombres 201, 204, 102 et 402 sont tous différents, et les produits 201 x 204 = 102 x 402 = 41004, ils sont donc bien complices.

Pour la plus grande, je ne trouve que la paire (133,993) pour une différence de 860.
Ils sont bien complices puisque 133, 993, 331 et 399 sont tous différents et 133 x 993 = 331 x 399 = 132069.

Merci pour la joute !

Posté par
Nofutur2
re : Joute n°95 : Nombres complices 18-12-12 à 14:27

gagnéPour la première question je trouve le couple (201,204).
Pour la seconde question je trouve le couple (133,993).

Posté par
Kidam
re : Joute n°95 : Nombres complices 18-12-12 à 14:48

gagnéSalut,

Enigme bien sympa !

Je trouve que la plus petite différence est de 3 avec les complices 201 et 204
Je trouve que la plus grande différence est de 860 avec les complices 133 et 993

Merci

Posté par
fontaine6140
re : Joute n°95 : Nombres complices 18-12-12 à 15:04

gagnéBonjour Godefroy,

Sachant que (a,b) et (b,a) sont non différentes, donc égales,
la différence des deux complices b-a ou a-b doit être unique :
il s'agit donc de la différence positive entre a et b.
Dés lors:
le min de la différence positive qui vaut 3 avec la paire (201,204)=(204,201)
le max de la différence positive qui vaut 860 avec la paire (133,993)=(993,133).

Si je me suis planté dans mon raisonnement de la définition de la différence, alors
le min de la différence qui vaut -860 avec la paire (993,133)
le max de la différence qui vaut 860  avec la paire (133,993).

Merci

Posté par
geo3
re : Joute n°95 : Nombres complices 18-12-12 à 16:09

gagnéBonjour
Pour le min de la différence je dirais (201,204)
Pour le max de la différence je dirais 133,993
A+

Posté par
Glapion Moderateur
re : Joute n°95 : Nombres complices 18-12-12 à 16:14

gagnéBonjour godefroy_lehardi,

j'ai trouvé que la paire (elle est unique) pour laquelle la différence entre les deux complices est la plus petite est 201 ; 204
j'ai trouvé que la paire (elle est unique) pour laquelle la différence entre les deux complices est la plus grande est 133 ; 993

merci pour cet enigme

Posté par
masab
re : Joute n°95 : Nombres complices 18-12-12 à 16:41

gagnéBonjour,

Paires pour lesquelles la différence entre les deux complices est la plus petite :
[201, 204]

Paires pour lesquelles la différence entre les deux complices est la plus grande :
[133, 993]

Merci pour cette énigme !

Posté par
totti1000
re : Joute n°95 : Nombres complices 18-12-12 à 17:33

gagnéSalut Godefroy,

Pour les paires de nombres complices à 3 chiffres pour lesquelles la différence entre les deux complices est la plus :
- petite, je propose (201;204).
- grande, je propose (133;993).

Merci pour l'énigme.

Posté par
rogerd
complices 18-12-12 à 19:31

gagnéIl me semble que la paire

201 204

est la seule réalisant la différence la plus petite et que la paire

133 993

est la seule réalisant la différence la plus grande.
Merci pour cette énigme!

Posté par
plumemeteore
re : Joute n°95 : Nombres complices 18-12-12 à 21:02

perduBonjour Godefroy.
Avec la plus petite différence : 201 et 204.
Avec la plus grande différence : 133 et 933.

Posté par
plumemeteore
re : Joute n°95 : Nombres complices 18-12-12 à 21:03

perdu133 et 993

Posté par
torio
re : Joute n°95 : Nombres complices 19-12-12 à 07:52

gagnéDifférence la plus petite pour la paire (201 ;204)     différence de 3
Différence la plus grande pour la paire (133 ;993)      différence de  860


Toutes les paires :

1]         ( 201 ; 204)         différence = 3
2]         ( 604 ; 609)         différence = 5
3]         ( 402 ; 408)         différence = 6
4]         ( 301 ; 309)         différence = 8
5]         ( 211 ; 224)         différence = 13
6]         ( 624 ; 639)         différence = 15
7]         ( 412 ; 428)         différence = 16
8]         ( 221 ; 244)         différence = 23
9]         ( 644 ; 669)         différence = 25
10]         ( 422 ; 448)         différence = 26
11]         ( 311 ; 339)         différence = 28
12]         ( 231 ; 264)         différence = 33
13]         ( 664 ; 699)         différence = 35
14]         ( 432 ; 468)         différence = 36
15]         ( 241 ; 284)         différence = 43
16]         ( 442 ; 488)         différence = 46
17]         ( 321 ; 369)         différence = 48
18]         ( 286 ; 341)         différence = 55
19]         ( 266 ; 331)         différence = 65
20]         ( 396 ; 462)         différence = 66
21]         ( 331 ; 399)         différence = 68
22]         ( 246 ; 321)         différence = 75
23]         ( 366 ; 442)         différence = 76
24]         ( 226 ; 311)         différence = 85
25]         ( 336 ; 422)         différence = 86
26]         ( 206 ; 301)         différence = 95
27]         ( 306 ; 402)         différence = 96
28]         ( 302 ; 406)         différence = 104
29]         ( 201 ; 306)         différence = 105
30]         ( 312 ; 426)         différence = 114
31]         ( 322 ; 446)         différence = 124
32]         ( 211 ; 336)         différence = 125
33]         ( 332 ; 466)         différence = 134
34]         ( 342 ; 486)         différence = 144
35]         ( 221 ; 366)         différence = 145
36]         ( 288 ; 441)         différence = 153
37]         ( 268 ; 431)         différence = 163
38]         ( 231 ; 396)         différence = 165
39]         ( 248 ; 421)         différence = 173
40]         ( 488 ; 663)         différence = 175
41]         ( 228 ; 411)         différence = 183
42]         ( 448 ; 633)         différence = 185
43]         ( 208 ; 401)         différence = 193
44]         ( 408 ; 603)         différence = 195
45]         ( 403 ; 608)         différence = 205
46]         ( 201 ; 408)         différence = 207
47]         ( 413 ; 628)         différence = 215
48]         ( 423 ; 648)         différence = 225
49]         ( 433 ; 668)         différence = 235
50]         ( 211 ; 448)         différence = 237
51]         ( 443 ; 688)         différence = 245
52]         ( 399 ; 662)         différence = 263
53]         ( 221 ; 488)         différence = 267
54]         ( 369 ; 642)         différence = 273
55]         ( 339 ; 622)         différence = 283
56]         ( 309 ; 602)         différence = 293
57]         ( 102 ; 402)         différence = 300
58]         ( 302 ; 609)         différence = 307
59]         ( 112 ; 422)         différence = 310
60]         ( 122 ; 442)         différence = 320
61]         ( 312 ; 639)         différence = 327
62]         ( 132 ; 462)         différence = 330
63]         ( 142 ; 482)         différence = 340
64]         ( 322 ; 669)         différence = 347
65]         ( 332 ; 699)         différence = 367
66]         ( 204 ; 603)         différence = 399
67]         ( 203 ; 604)         différence = 401
68]         ( 224 ; 633)         différence = 409
69]         ( 213 ; 624)         différence = 411
70]         ( 244 ; 663)         différence = 419
71]         ( 223 ; 644)         différence = 421
72]         ( 264 ; 693)         différence = 429
73]         ( 233 ; 664)         différence = 431
74]         ( 243 ; 684)         différence = 441
75]         ( 306 ; 804)         différence = 498
76]         ( 103 ; 602)         différence = 499
77]         ( 406 ; 906)         différence = 500
78]         ( 102 ; 603)         différence = 501
79]         ( 304 ; 806)         différence = 502
80]         ( 336 ; 844)         différence = 508
81]         ( 113 ; 622)         différence = 509
82]         ( 426 ; 936)         différence = 510
83]         ( 314 ; 826)         différence = 512
84]         ( 366 ; 884)         différence = 518
85]         ( 123 ; 642)         différence = 519
86]         ( 446 ; 966)         différence = 520
87]         ( 112 ; 633)         différence = 521
88]         ( 324 ; 846)         différence = 522
89]         ( 133 ; 662)         différence = 529
90]         ( 466 ; 996)         différence = 530
91]         ( 334 ; 866)         différence = 532
92]         ( 143 ; 682)         différence = 539
93]         ( 122 ; 663)         différence = 541
94]         ( 344 ; 886)         différence = 542
95]         ( 132 ; 693)         différence = 561
96]         ( 204 ; 804)         différence = 600
97]         ( 214 ; 824)         différence = 610
98]         ( 224 ; 844)         différence = 620
99]         ( 234 ; 864)         différence = 630
100]         ( 244 ; 884)         différence = 640
101]         ( 206 ; 903)         différence = 697
102]         ( 104 ; 802)         différence = 698
103]         ( 102 ; 804)         différence = 702
104]         ( 203 ; 906)         différence = 703
105]         ( 226 ; 933)         différence = 707
106]         ( 114 ; 822)         différence = 708
107]         ( 246 ; 963)         différence = 717
108]         ( 124 ; 842)         différence = 718
109]         ( 213 ; 936)         différence = 723
110]         ( 266 ; 993)         différence = 727
111]         ( 134 ; 862)         différence = 728
112]         ( 112 ; 844)         différence = 732
113]         ( 144 ; 882)         différence = 738
114]         ( 223 ; 966)         différence = 743
115]         ( 122 ; 884)         différence = 762
116]         ( 233 ; 996)         différence = 763
117]         ( 103 ; 903)         différence = 800
118]         ( 113 ; 933)         différence = 820
119]         ( 123 ; 963)         différence = 840
120]         ( 133 ; 993)         différence = 860


A+
Torio

Posté par
dpi
re : Joute n°95 : Nombres complices 19-12-12 à 09:56

gagnéBonjour

Sur la cinquantaine de complices se distinguent:
En écart minimal 201/204 soit 3 pour 41004 =102 x402
En écart maximal 133/993 soit 860 pour 132069 =331 x399

Posté par
rijks
re : Joute n°95 : Nombres complices 19-12-12 à 09:59

gagnéJ'espère que j'ai bien compris la question...

La plus petite différence des deux nombres complices :
a=201 b=204 différence 3

La plus grande différence des deux nombres complices :
a=993 b=133 différence 860

Posté par
rschoon
re : Joute n°95 : Nombres complices 19-12-12 à 11:58

gagnéBonjour à tous.

Ma réponse :
La paire (201;204) présente la différence minimum (3).
La paire (133;993) présente la différence maximum (860).

Merci pour l'énigme.

Posté par
castoriginal
Joute n°95 : Nombres complices 19-12-12 à 12:16

gagnéBonjour,

j'ai trouvé une paire de nombres complices pour la plus petite différence:
il s'agit de 201 et 204 pour un écart de 3.
Pour la paire donnant la plus grande différence, il s'agit de 993 avec 133 donc une différence de 860.

Bien à vous

Posté par
Simpom
re : Joute n°95 : Nombres complices 19-12-12 à 14:20

gagnéBonjour !

Voici mes réponses :
- celle pour laquelle la différence entre les deux complices est la plus petite est la paire (204, 201)
- celle pour laquelle la différence entre les deux complices est la plus grande est la paire (993,133)

Posté par
Pierre_D
re : Joute n°95 : Nombres complices 19-12-12 à 18:09

gagnéSalut Godefroy,

Si je me suis pas trompé dans l'écriture de mon programme, les deux réponses sont :
- différence la plus petite (3) :  une seule paire  { 201 ; 204 }
- différence la plus grande (860) :  une seule paire  { 133 ; 993 }.

Merci à toi ...

Posté par
pdiophante
joute n°95 19-12-12 à 23:25

gagnéBonjour
Q1 204 et 201
Q2 993 et 133

Posté par
abyahi
re : Joute n°95 : Nombres complices 19-12-12 à 23:40

perdubonjour
j'ai trouvé
différence entre les deux complices est la plus petite :6 pour le couple(402,408)
différence entre les deux complices est la plus grande: 762 pour le couple(884,122)

cordialement
merci

Posté par
jugo
re : Joute n°95 : Nombres complices 20-12-12 à 04:01

gagnéBonjour,

Plus petite différence = 3
1 seule paire = ( 201 ; 204 )

Plus grande différence = 860
1 seule paire = ( 133 ; 993 )

merci

Posté par
brubru777
re : Joute n°95 : Nombres complices 20-12-12 à 14:43

gagnéBonjour,

Je trouve (201, 204) (différence min 3) et (133, 993) (différence max 860)

Merci pour l'énigme.

Posté par
frenicle
re : Joute n°95 : Nombres complices 21-12-12 à 00:10

gagnéBonjour Godefroy

Je propose

- pour la plus petite différence, la paire {201,204}, différence : 3.
- pour la plus grande différence, la paire {133,993}, différence : 860.

Merci pour cette joute !

Posté par
Surb
re : Joute n°95 : Nombres complices 21-12-12 à 18:42

gagnéBonjour,

Je propose (993 ; 133) pour la plus grande différence et (204 ; 201) plour la plus petite différence.

Merci pour l'énigme.

Posté par
Alishisap
re : Joute n°95 : Nombres complices 23-12-12 à 18:35

perduBonjour et merci pour l'énigmo !

J'ai un souci de compréhension.

J'ai trouvé que la paire de complices (à 3 chiffres) dont la différence est la plus petite est 133;993 (différence : -860)
Dans ce cas, sachant que le couple 993;133 est identique au couple 133;933 selon l'énoncé, celle dont la différence est la plus grande est 963;123 (différence : 840).

MAIS, on peut très bien considérer que le couple dont la différence est la plus grande est 993;133 (différence : 860). Et dans ce cas, celui dont la différence est la plus petite est 123;963 (différence : -840).

Dillemme donc. Selon l'énoncé tel qu'il est écrit, en supposant que j'ai tout compris et que le programme que j'ai utilisé pour répondre ne contient pas d'erreur, il y a deux solutions possibles.

Voici ma réponse définitive (il faut bien répondre quelque chose) : 133;993 pour la paire dont la différence est la plus petite et 963;123 pour la paire dont la différence est la plus grande.

Sachant (je me répète) que j'aurais pu prendre la deuxième solution que ça n'aurait rien changé.

Pour terminer, je partage le programme (en Python) que j'ai réalisé pour répondre. Il est loin d'être simplifié au maximum (notamment la fonction pour déterminer l'inversé d'un nombre où je ne me suis vraiment pas embêté) mais en tout cas il a l'air de fonctionner. Attention, il ne prend pas en compte le fait que les paires (a;b) et (b;a) sont identiques.

def inverse(nbr):
    if nbr>=100 and nbr<200:
        c=1
    elif nbr>=200 and nbr<300:
        c=2
    elif nbr>=300 and nbr<400:
        c=3
    elif nbr>=400 and nbr<500:
        c=4
    elif nbr>=500 and nbr<600:
        c=5
    elif nbr>=600 and nbr<700:
        c=6
    elif nbr>=700 and nbr<800:
        c=7
    elif nbr>=800 and nbr<900:
        c=8
    else:
        c=9
    nbr2=nbr-c*100
    if nbr2>=0 and nbr2<10:
        d=0
    elif nbr2>=10 and nbr2<20:
        d=1
    elif nbr2>=20 and nbr2<30:
        d=2
    elif nbr2>=30 and nbr2<40:
        d=3
    elif nbr2>=40 and nbr2<50:
        d=4
    elif nbr2>=50 and nbr2<60:
        d=5
    elif nbr2>=60 and nbr2<70:
        d=6
    elif nbr2>=70 and nbr2<80:
        d=7
    elif nbr2>=80 and nbr2<90:
        d=8
    else:
        d=9
    u=nbr2-d*10
    nbrinv=c+d*10+u*100
    return nbrinv
nbr=100
nbr2=100
stock=998001
while nbr<=999:
    while nbr2<=999:
        nbrinv=inverse(nbr)
        x=nbr
        nbr=nbr2
        nbr2inv=inverse(nbr)
        nbr=x
        pro=nbr*nbr2
        pro2=nbrinv*nbr2inv
        diff=nbr-nbr2
        if nbr!=nbrinv and nbr!=nbr2 and nbr!=nbr2inv and nbr2!=nbr2inv and nbr2inv!=nbrinv and pro==pro2:
            if diff<=stock:
                stock=diff
                print nbr,";",nbr2,"| diff :",diff
        nbr2+=1
    nbr+=1
    nbr2=100


Ce programme sert à déterminer le couple de nombre (à 3 chiffres) dont la différence est la plus petite. Pour connaître celui dont la différence est la plus grande, il suffit de remplacer les deux lignes soulignées par :

stock=-899


Et :
            if diff>=stock:

Voilà voilà.

Posté par
edda
re : Joute n°95 : Nombres complices 24-12-12 à 12:53

perduD'aprés mes calculs j'ai trouvé:
102 et 804  (avec 804-102=702)
102 et 402  (avec 402-102=300)

Posté par
jonjon71
re : Joute n°95 : Nombres complices 26-12-12 à 11:54

gagnéBonjour,

Voici ma réponse :

La paire de nombres complices à 3 chiffres ayant la différence la plus petite est (204;201)  et 204 - 201 = 3.
La paire de nombres complices à 3 chiffres ayant la différence la plus petite est (993;133)  et 993 - 133 = 860.


Merci !

Posté par
RickyDadj
re : Joute n°95 : Nombres complices 27-12-12 à 00:48

gagnéSalut, godefroy! Salut, tous!
Je pense que la(les) paire(s) pour la(les)quelle(s) la différence est la plus petite est(sont):
(204;201).
Et, pour la différence la plus grande, on a:
(993;133).
C'est tout... pour le moment.
Ah non! Joyeux Noël et Heureuse Année 2013 à tous, et aussi à jamo et à godefroy (les iliens ont tout de même sauvé le monde)!

Posté par
Alishisap
re : Joute n°95 : Nombres complices 28-12-12 à 13:54

perduRebonjour,
Je viens à l'instant de comprendre mon erreur.
En fait j'ai à moitié raison.

Au début je pensais qu'il fallait que dans un couple de nombres complices (a;b), la différence a-b soit la plus petite/grande possible.
C'est-à-dire que je faisais a-b tout le temps.

En vérité, il fallait que la DISTANCE entre a et b soit la plus petite/grande possible, et ça change tout.
C'est-à-dire qu'il faut faire a-b si a>b. MAIS il faut faire b-a si a<b.

C'est pourquoi effectivement on peut dire que (a;b) et (b;a) sont des couples identiques, car la différence est la même.

Une erreur très grossière de compréhension qui me semble complètement stupide à présent.

La vraie réponse est donc 993;133 pour le couple de nombres complices dont la différence est la plus grande (860) et 204;201 pour le couple dont la différence est la plus petite (3).

Bon, le principal est que j'ai compris et réctifié mon erreur, il n'en reste pas moins que c'est très frustrant

Allez, j'ai largement mérité un

À bientôt

Posté par
loic74
re : Joute n°95 : Nombres complices 28-12-12 à 23:31

perduBonjour,

pour la plus petite différence on a :

201 et 204 avec une différence de 3

et pour la plus grande :

301 et 309 avec une différence de 8.

Merci beaucoup :=)

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°95 : Nombres complices 08-01-13 à 13:30

Clôture de l'énigme :

Pas trop de problèmes sur cette joute. Les complices ont été assez facilement démasqués.

Posté par
Chatof
re : Joute n°95 : Nombres complices 09-01-13 à 04:53

bonjour,
Trop tard, le poissonnier est fermé.
celles pour lesquelles la différence entre les deux complices est la plus petite : 204,201
celles pour lesquelles la différence entre les deux complices est la plus grande : 993,133

merci Godefroy_lehardi

Posté par
Chatof
re : Joute n°95 : Nombres complices 09-01-13 à 05:27

Parmi les paires de nombres complices à 4 chiffres
celles pour lesquelles la différence entre les deux complices est la plus petite :
2004,2001
2544,2541
celles pour lesquelles la différence entre les deux complices est la plus grande :
9099,1101
Parmi les paires de nombres complices à 5 chiffres
celles pour lesquelles la différence entre les deux complices est la plus petite : 20004,20001
celles pour lesquelles la différence entre les deux complices est la plus grande : 90999,11101

famille de complices :
Si on inverse un nombre de la liste, il est complice avec les autres :
[12,24,48,36]
[102,204,408,306,112,224,448,336,122,244,488,366]
[1212,1332,1452,1572,1692,2304,2424,2544,2664,2784,3516,3636,3756,3876,3996,4608,4728,4968,4848]
[11102,12322,13542,14762,15982,22204,23424,24644,25864,33306,34526,35746,36966,44408,46848,45628]

Posté par
dpi
re : Joute n°95 : Nombres complices 09-01-13 à 12:16

gagné>godefroy_lehardi

Etant un spécialiste des étourderies (souvent
dues à des SPAM qui viennent perturber frappes et relectures,
je tiens à plaider pour plumemeteore qui a répondu en deux
fois trés proches .

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°95 : Nombres complices 09-01-13 à 13:51

Bonjour dpi,

Le débat a déjà eu lieu plusieurs fois sur ce thème.
Il est préférable qu'on s'en tienne à la règle et rien qu'à la règle, sinon les litiges vont s'accumuler.

J'en suis désolé pour plumemeteore mais seul le premier post peut être accepté, sauf problème technique manifeste que le correcteur est libre d'apprécier.

Posté par
dpi
re : Joute n°95 : Nombres complices 10-01-13 à 09:46

gagnéBonjour ,

En plaidant pour plumemeteore,+1 min,j'anticipais
mes erreurs futures dont une d'une seconde !!:
Alors que je relisais un spam m'a privé du controle du clavier
et j'ai validé alors que je voulais mettre - au lieu de plus..

C'est rageant car:
1/on a trouvé
2/on se prend -1 au lieu de +2
3/pendant ce temps les "inactifs" gardent leur 0

Mais comme en politique ,il faut savoir attendre...

Posté par
brubru777
re : Joute n°95 : Nombres complices 10-01-13 à 11:17

gagnéUne solution pour éviter ce genre de problèmes (que j'utilise après avoir eu plusieurs poissons pour erreurs d'étourderie/de manip) :
- taper la réponse dans un éditeur de texte (bloc-notes ou autre)
- relire et vérifier ses résultats
- relire et vérifier ses résultats
- relire et vérifier ses résultats
- faire un copier/coller du message et poster sa réponse

La règle est claire, seul le 1er post compte. Donc autant se donner les moyens pour la respecter.

Après, gagner des points, c'est bien mais le vrai but de ce forum n'est-il pas surtout de prendre plaisir à résoudre les énigmes que nous proposent généreusement nos amis poseurs  ?

Posté par
godefroy_lehardi Posteur d'énigmes
re : Joute n°95 : Nombres complices 10-01-13 à 12:14

Ca me parait être une excellente méthode , à laquelle j'ajouterai un petit détail :
- relire l'énoncé avant de poster

Posté par
Pierre_D
re : Joute n°95 : Nombres complices 10-01-13 à 12:18

gagné... et, dans la ligne du message de Brubru :
- relire l'énoncé avant de poster

Posté par
brubru777
re : Joute n°95 : Nombres complices 10-01-13 à 13:27

gagnéEffectivement, j'ai oublié ce point très important !

Posté par
Chatof
re : Joute n°95 : Nombres complices 10-01-13 à 19:10

Ne pas répondre la nuit (le cerveau n'est pas vaillant).
Ne pas répondre à jeun (un cerveau sans carburant dysfonctionne).
Ne pas inverser les questions d'une énigme double.
Vérifier le résultat avec une seconde méthode.
Ne pas répondre trop vite, rechercher les différentes interprétations de l'énigme et choisir !
Bien relire l'énoncé avant de poster mais pas trop : https://www.ilemaths.net/sujet-enigmo-277-bis-elections-et-problemes-de-depouillement-499865.html
Ne pas se tromper en reproduisant l'image de l'énigme (nombre de lignes, position des points etc)
Ne pas attendre plus de 14 jours pour répondre (et encore moins 21).
Apprendre à compter avant de répondre !
Répondre avec la bonne unité et le bon arrondi.
Se méfier d'une réponse baroque ou peu probable.

Posté par
dpi
re : Joute n°95 : Nombres complices 11-01-13 à 15:34

gagnéUn grand merci à tous pour ces conseils

Qui me donnera un anti-spam fiable (et gratuit)

Posté par
fontaine6140
re : Joute n°95 : Nombres complices 11-01-13 à 16:12

gagnéBonjour dpi,
Pour le browser Mozilla firefox

Posté par
dpi
re : Joute n°95 : Nombres complices 12-01-13 à 08:50

gagnéBonjour fontaine6140

Merci

Je vais essayer

Challenge (énigme mathématique) terminé .
Nombre de participations : 0
:)0,00 %0,00 %:(
0 0

Temps de réponse moyen : 47:31:24.
Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !