Inscription / Connexion Nouveau Sujet
Niveau autre
Partager :

polynome parametre a pour que P(x) soit divisible par T(x)

Posté par ostap (invité) 29-05-04 à 18:33

bonjour, j'ai un petit soucis avec un exercice, toute aide sera
très apprecié:
ex.
Déterminer le paramètre a pour que P(x) soit divisible par T(x)
P(x) = x4 + 2x3 + ax2 + 6x - 3
T(x) = x2 + 3
Si vous pouriez me l'expliquer avec le schema de Horner ce serai
très sympa.  
Merci beaucoup
Ostap

Posté par Guillaume (invité)re : polynome parametre a pour que P(x) soit divisible par T(x) 29-05-04 à 19:38

je sais pas ce qu'est horner!
moi je commencerai la division:

P(x)=T(x)*Q(x) on sait, par les degrés que Q(x) est de la forme x²+bx+c

T(x)Q(x)=(x²+3)(x²+bx+c)=x4+bx3+(3+c)x²+3bx+2c
=x4+2x3+ax²+6x-3

il vient
b=2
a=3+c
6=3b
-3=2c
d'ou
b=2
c=-3/2
a=3+c=3/2

on a la valeur de a !
et au passage on  a effectué la division car on connait le diviseur:
Q(x)=x²+2x-3/2

Sauf erreur,
A+

Posté par ostap (invité)re : polynome parametre a pour que P(x) soit divisible par T(x) 29-05-04 à 19:50

merci Guillaume,
c'est bon j'ai compris le truc.

Posté par ostap (invité)meme genre de probleme 29-05-04 à 20:39

re-bonjour
tu sais Guillaume j'arrive pas a en faire un autre avec ta method.
tu peux m'aider?
meme chose: trouver a
P(x) = 3x4 + ax3 + 8x2 - 2ax - 20  
T(x) = x - 2

Posté par Emma (invité)re : polynome parametre a pour que P(x) soit divisible par T(x) 30-05-04 à 00:13

Salut ostap !

La même méthode permet de conclure. Je me lance.
Je t'écris toute ma solution, mais...
Si tu arrives à ne pas tout lire (moi, je sais que, quand j'ai
une solution, je ne peux pas m'empêcher de la lire en entier,
alors... je ne te jetterais pas la première pierre ), je te conseille
de ne lire que les "titres" des étapes pour te guider, mais de
faire le reste seul...


Soit Q le polynôme cherché :

1. Déterminer le degré du polynome cherché :
deg(Q)=deg(P)-deg(T)=4-1=3

2. Choisir les inconnues et traduire l'hypothèse :
Donc on cherche b, c, d et e tels que
P=T*Q avec Q(X)=b*X^3+c*X^2+d*X+e
Pour tout X
T(X)*Q(X)=(X-2)*(b*X^3+c*X^2+d*X+e)
T(X)*Q(X)=b*X^4+(c-6)*X^3+(d-2c)*X^2+(e-2d)X-2e

3. Identifier les coefficients :
On a, pour tout X, P(X)=T(X)*Q(X)
Donc 3*X^4+a*X^3+8*X^2-2a*X-20=b*X^4+(c-6)*X^3+(d-2c)*X^2+(e-2d)X-2e
... donc en identifiant les coefficients...
-> coeff de X^4 : b=3
-> coeff de X^3 : (c-6)=a
-> coeff de X^2 : (d-2c)=8
-> coeff de X^1 : (e-2d)=-2a
-> coeff constant : (-2e)=-20

4. Résoudre le système obtenu :
Bref, e=10
d=(10+2a)/2 = 5+a
c=[(5+a)-8]/2 = (a-3)/2
c=a+6
b=3
D'une part, c=a+6, et d'autre part, c=(a-3)/2.
On en déduit que a=-15

Finalement, a=-15, b=3, c=-9, d=-10, e=10

4. Vérifier/Répondre au problème initial :
Si P est divisible par T, alors nécessairement, a=-15
Réciproquement, pour a=-15,  P(X)=3X^4 - 15X^3 + 8X^2 + 30X - 20 est bien divisible
par T(X)=X-2
car P(X)=T(X)*[3X^3-9X^2-10X+10]

Sauf erreur...

@++

Posté par Guillaume (invité)re : polynome parametre a pour que P(x) soit divisible par T(x) 30-05-04 à 01:01

...rien à redire.

lol
A+

Posté par ostap (invité)re : polynome parametre a pour que P(x) soit divisible par T(x) 30-05-04 à 01:30

merci beaucoup a vous, je crois que j'ai tout compris cette
fois.
bye

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !