Bonjour et meilleurs vœux,
En cette nouvelle année, j'exhume un problème de niveau terminale qui m'avait bien plu. Je pense qu'il peut intéresser certains voire leurs donner des idées pour un éventuel DM.
Le but, vous l'aurez compris, n'est pas de le résoudre ici. Je le poste juste à titre informatif.
Un bon terminale peut le court-circuiter en 3 lignes. A mon sens il est préférable de suivre l'énoncé pas à pas.
I- Des racines...
A tout , on associe la suite
définie par
et
,
1. Etudier le cas
2. Soit et
les suites associées à deux réels
et
et
celle associée au produit
.
Montrer que: ,
3. Soit et
les suites associées à
et
. Montrer que:
,
4. On suppose ici que . Montrer que
est minorée par 1, décroissante et convergente vers 1.
5. Déduire du I_3. le comportement de quand
.
En conclusion, ,
est convergente vers 1.
II- Etude numérique d' une seconde suite.
A tout , on associe la suite
définie par:
,
1. Peut-on conclure quant à la convergence de cette suite ?
2. Démontrer que: ,
3. Voici deux algorithmes:
A1: données N, W
T
Noter N,T
N N+1
W
A2: données N,W,T
W
T
N N+1
Noter N,T
a) Expliquer en quoi A1 ou A2 permet de construire un tableau de la suite .
b) Essayez de trouver en quoi l' un des deux algorithmes est préférable à l' autre.
c) Conjecturer sur ce tableau des propriétés de .
III- Où on lève l' indétermination.
1. Montrer que est décroissante.
2. On suppose ici que . Montrer que
est convergente.
3. Soit et
les suites associées à
,
et
celles associées à
.
Montrer que: ,
.
4. En déduire que pour ,
est convergente.
En conclusion: pour tout , la suite
est décroissante et convergente vers un réel qu' on notera
.
On définit ainsi une application
IV- Propriétés de l' application l.
1. Montrer que
2. Soit et
les suites associées à
,
et
celles associées à
,
et
celles associées à
.
Montrer que: ,
En déduire que
3. Montrer que est une application croissante sur
.
V- Construction approchée de la courbe représentative de l.
1. Montrer que pour tout , et pour tout entier naturel
, on a:
.
2. En déduire que pour tout et pour tout entier naturel
,
.
3. Avec , et les outils numériques du II, quels encadrements obtient-on pour:
,
,
,
,
?
4. Ébaucher sur une figure soignée l' allure de la courbe représentative de dans un repère orthonormé.
VI- Dérivabilité de l.
1. Déduire du V-2. que pour tout ,
puis que
est dérivable en 1 de nombre dérivé 1.
2. Soit . Déduire de la question précédente que
est dérivable en
de nombre dérivé
.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :