Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

a l aide

Posté par une blonde (invité) 25-02-03 à 21:37

determinez une equation du cercle C ds chacun des cas suivant
1)C  est le cercle circonscrit au triangle ABC avec A(-2:5)  B(4;-8)
et C(3;7)
2)C a pour centre T(3;-2) et est tangent a la droite d equation x-3y+1=0

Posté par JJ (invité)re : a l aide 26-02-03 à 08:22

1)


équation d'un cercle de centre (a, b) et raron R :
  
(x-a)²+(y-b)² = R²

il y a 3 inconnues a, b, et R.

le cercle passe par le point A(-2; 5) donc :

(-2-a)²+(5-b)² = R²

de même pour lers points B et C , ce qui donne en tout 3 équations.


On a 3 équations pour 3 inconnues : il suffit de résoudre.

2)

on connait le centre donc a=3 et b=-2. Il faut trouver R.

Soit (x, y) un point d'intersection du cercle et de la droite y =
(x+1)/3

y = (x+1)/3  et (x-a)²+(y-b)²= R²


(x-a)²+(((x+1)/3)-b)²= R²

c'est une équation du second degré en x qui donne donc en général deux
racines donc deux points d'intersection.

Mais, puisque la droite doit être tangente, il y a un seul point, donc
une seule racine.

On connait la condition pour q'une équation du second degré n'ait
qu'une racine. On écrit cette condition et  on trouve la valeur
de R.



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1687 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !