Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

comportements asymptotiques

Posté par angelus (invité) 25-02-02 à 12:48

je ne sais pas comment resoudre se probleme :
soit la foction f definie sur ]- l'infini ; 2/3[ par : (-3x+a)/(2-3x)

etudier le comportement de f en 2/3 et en - l'infini. En deduire les
equations des asymptotes de f .

merci

Posté par Dran (invité)re : comportements asymptotiques 25-02-02 à 19:20

Il faut étudier la limite de cette fonction en 2/3 par valeurs négatives
dixit le sujet.
Lim(f(x),x->2/3-)=Lim((a-2)/(2-3x),x->2/3-)
Maintenant, il faut discuter
Lim(2-3x,x->2/3-)=0+ (étudier pour cela le signe de 2-3x sur R)
Donc si a>2, lim(f(x),x->(2/3)-)=+oo de la forme k/0+ avec k>0
Si a<2, cette limite vaut -oo (de la forme k/0+ avec k<0)
Si a=2 f(x)=(2-3x)/(2-3x)=1 pour tout réel x différent de 2/3 et la
limite vaut 1
Dans les deux premiers cas, la droite d'équation x=2/3 est asymptote
à Cf (votre sujet ne veut rien dire !) - Cf étant la courbe représentative
de f, parallèle à l'axe des ordonnées.
En -oo, si a=2, f(x)=1 pour x<2/3 donc la limite vaut 1 et Cf est asymptote
à ... elle même c'est une droite !
Sinon, factorisez au numérateur et au dénominateur par x (le terme de plus
haut degré) et montrez que la limite vaut (-3/-3)=1 et la droite
d'équation y=1 est asymptote à Cf au voisinage de -oo (et cette
asymptote est parallèle à l'axe des abscisses !)



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1677 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !