Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

Coordonnées d'un projeté orthogonal

Posté par
muchachos
11-11-11 à 14:58

Bonjour ,

Je suis bloqué sur un exercice qui est le suivant :

Soit un repère orthonormé (O;i;j)

Calculer les coordonnées du projeté orthogonal de H de B (-2;3) sur la droite OA où A a pour coordonnées (4;2)

J'ai tracé la figure sur geogebra mais je ne comprend pas comment trouver les coordonnées du point H.
Je pensais passer par les angles mais je m'en sort plus ...

Coordonnées d\'un projeté orthogonal

Posté par
Ted
re : Coordonnées d'un projeté orthogonal 11-11-11 à 15:14

Bonjour,
si H est le projeté orthogonal de B sur OA alors tu peux dire que le triangle BHA est rectangle en H donc que BH²+HA²=AB² et que H appartient à la droite OA ; tu dois donc poser (x,y) les coordonnées de H et écrire les deux relations concernant H en fonction des coordonnées de A, B et H ...

Posté par
muchachos
re : Coordonnées d'un projeté orthogonal 11-11-11 à 15:46

Oui c'est ce que j'ai fait mais alors avec l'equation AB²=BH²+HA² on a une relation avec des distances et non des points en fonction de x et y ...

Posté par
Ted
re : Coordonnées d'un projeté orthogonal 11-11-11 à 15:54

tu as une relation avec des x et y tes deux inconnues ensuite tu sais que H appartient à la droite OA ce qui te donne une relation entre x et y tu auras donc deux équations à deux inconnues...
commences par me donner le détail de la relation AH²+HB²=AB²
ensuite écris l'équation de la droite OA

Posté par
muchachos
re : Coordonnées d'un projeté orthogonal 11-11-11 à 16:06

Pour AH²+HB²=AB² On a : (Xb-Xa)²+(Yb-Ya)² = ((XH-XA)²+(YH+YA)²)+((XB-XH)²+(YB-YH)²)
Les racines se simplifie avec le carré des vecteurs dans la formule de pythagore.

et la je trouve cette équation trop complexe...

et pour l'équation de la droite OA j'ai y=(1/2)x

Posté par
Ted
re : Coordonnées d'un projeté orthogonal 11-11-11 à 16:11

Ok pour l'équation de (OA)
tu connais les coordonnées de A ainsi que celles de B, tu peux donc exprimer AH² et BH² en posant les coordonnées de H=(x,y) et tu peux donner également AB²

Posté par
muchachos
re : Coordonnées d'un projeté orthogonal 11-11-11 à 16:19

Oui mais si je remplace simplement dans l'équation j'obtiens :

(-2-4)²+(3-2)²=(Xh-4)²+(Yh-2)²+(-2-Xh)²+(3-Yh)²

Posté par
Ted
re : Coordonnées d'un projeté orthogonal 11-11-11 à 16:23

alors voilà ce je j'obtiens :

HB^2=(x+2)^2+(y-3)^2\\HA^2=(x-4)^2+(y-2)^2\\AB^2=(4+2)^2+(2-3)^2=37
maintenant tu peux continuer en disant que HB²+HA²=AB² tu développes et tu regroupes ensuite tu te sers de la relation  y=\frac{1}{2}x et tu remplaces y par l'expression en fonction de x puis tu résous l'expression ainsi obtenue en fonction de x

Posté par
muchachos
re : Coordonnées d'un projeté orthogonal 11-11-11 à 16:44

Alors je suis d'accord c'est exactement ce que j'ai fait juste ci-dessus.

en remplacent y par (1/2)x j'obtiens au final une équation du 2nd degré : 37=3x²-9x+33

donc 0=3x²-9x-4

je calcul delta et j'obtiens deux solutions x1= -0.39 et x2=3.39

approximativement .

Je choisis donc quel solutions pour Xh ? logiquement c'est -0.39 car la droite OA est croissant et le point H est négatif en Y et X.

Par déduction de Y=(1/2)Xh je trouve Y=-0.195

est-ce juste ?

Posté par
Ted
re : Coordonnées d'un projeté orthogonal 11-11-11 à 16:55

alors moi j'ai 5/2 x²-9x-4=0 qui est équivalent à 5x²-18x-8=0

Posté par
muchachos
re : Coordonnées d'un projeté orthogonal 11-11-11 à 17:23

j'ai tracé sur le logiciel  geogebra la figure qui après peut me donner les coordonnées des points en en tracer le projeté orthoganal H je trouve comme coordonnéeH(-0.4;-0.2)

Posté par
Ted
re : Coordonnées d'un projeté orthogonal 11-11-11 à 17:30

oui c'est ce que j'ai trouvé en résolvant l'équation 5x²-18x-8=0



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1760 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !