Inscription / Connexion Nouveau Sujet

1 2 +


Posté par
carpediem
re : Le plus grand triangle 30-07-20 à 18:07

juste une remarque en passant (et avant d'aller couper du bois) et pour unifier certain résultats :

Imod @ 28-07-2020 à 11:09

L'inégalité peut se réduire à : a+b\geq2+\frac{ab}{4}
s'écrit aussi :

a + b \ge 2 + \dfrac {ab} 4 \iff ab + 8 - 4a - 4b \le 0 \iff (a - 4)(b - 4) \le 8

sachant que a et b sont positifs ...

Posté par
Imod
re : Le plus grand triangle 30-07-20 à 19:37

Le problème quand on balance des exercices sans les avoir vraiment cherchés c'est qu'on ne sait pas sur quoi on va tomber . Quand en plus on n'est pas vraiment disponible ...

Le cas général semblant plutôt lourd et de peu d'intérêt , je propose un compromis entre les différentes propositions :

On ne considère que des rectangles à côtés entiers et on cherche le périmètre ( l'aire ) du plus grand équitriangle inscrit dans ce rectangle . Le cas du triangle réalisant la moitié de l'aire du rectangle est déjà résolu mais pour les autres cas le problème reste ouvert  : un critère donnant la position du triangle réalisant le maximum et si possible son aire en fonction des côtés du rectangle .

Imod

PS : merci aux participants qui ont accepté de me suivre et désolé pour ma participation en pointillés .

PPS : Un argument pour confirmer l'hypothèse de LittleFox concernant les deux sommets communs au rectangle et au triangle ?

PPPS : je serais bientôt pleinement avec vous , bonnes vacances à ceux qui ont cette chance

  

Posté par
dpi
re : Le plus grand triangle 31-07-20 à 07:46

Bonjour,

J'apprécie que mon terme d'équitriangle  ait été  "homologué" faute de mieux .
Je suis d'accord avec ta définition de recherche.
C'était une idée intéressante ;tout à fait dans l'esprit "détente"

Posté par
Imod
re : Le plus grand triangle 31-07-20 à 12:45

Attention , les points ne sont pas sur les courbes mais entre elles ( au sens large ) . Les solutions sont 5X9 , 5X10 , 5X11 , 5X12 , 6X7 et 6X8 . Les calculs sont simples et on trouve au passage un deuxième triangle rectangle ( le double du fameux 345 ) .

Il reste à démêler les autres cas

Imod

Posté par
LittleFox
re : Le plus grand triangle 31-07-20 à 13:45


Après analyse des bornes et comparaison des solutions, j'obtiens que la solution avec un côté confondu avec une diagonale est toujours meilleure que celle avec un sommet sur le côté adjacent.

Donc si on reprend le graphe de Imod

Imod @ 30-07-2020 à 10:54

Même s'il reste des points à éclaircir , il me semble que pour les rectangles à côtés entiers réalisant la moitié de l'aire , les six solutions sont données par la double inégalité de LittleFox

Le plus grand triangle

Imod


Il n'y a pas de courbe supplémentaire, le quadrant est divisé en 3 zones:

- Sous la courbe l = 4\frac{L²}{L²-16}, il n'y pas de solution.
- Entre cette courbe et la courbe l = 4\frac{L-2}{L-4}, la solution est donnée par \frac{Ll}{2}
- Au dessus des deux courbes, la solution utilise la diagonale et est \frac{2(L-2)\sqrt{L²+l²}-4l}{L-4}

Note: sur la deuxième courbe, les trois solutions ont la même valeur.

Posté par
LittleFox
re : Le plus grand triangle 31-07-20 à 14:36

Et pour reprendre l'unification de carpediem:

Il y a une solution si ((\frac{L}{4})²-1)(\frac{l}{4}-1) \ge 1

Si (\frac{L}{4}-1)(\frac{l}{4}-1) \ge \frac{1}{2} , cette solution est \frac{Ll}{2}, sinon elle est \frac{2(L-2)\sqrt{L²+l²}-4l}{L-4}

Posté par
dpi
re : Le plus grand triangle 31-07-20 à 14:52

Autre observation:

8 x6  donne la solution la plus "entière" comme l'a noté Imod avec A=P=24= 6x8x10
suivi de  12x5  -->5x12x13
2 autres donnent des dimensions à faibles décimales 6.5x7x7.5      6.25x7.25x9    .
Par contre 10x5  n'est pas évident:  5.26392012 ..x9.736068.. x10.

J'ai essayé un carré 7X7 :  impossible donc de trouver 24.5 mais j'ai un maxi à 23.666
soit à 96.6%.
Rares sont le solutions à +90 % comme notre fameux  10x6.

Posté par
LittleFox
re : Le plus grand triangle 31-07-20 à 15:48


Pour 7x7, j'ai un maxi à 23.664983.
Comment trouves-tu 23.666? Ça mettrais à mal mes résultats

Posté par
Imod
re : Le plus grand triangle 31-07-20 à 16:40

@Dpi pour 10X5 et 11X5 , il suffit de couper la longueur en \frac{10\pm3\sqrt{5}}{2} et \frac{22\pm3\sqrt{41}}{4} . La solution est facile à trouver en remarquant qu'il y a une symétrie par rapport à la longueur .

Imod

Posté par
Imod
re : Le plus grand triangle 31-07-20 à 17:16

La dernière synthèse de LittleFox est vraiment simple et cohérente avec l'ensemble des résultats obtenus ( il y a une inversion dans l'inégalité avec 1/2 ) .

Je n'ai pas compris la note :sur la deuxième courbe, les trois solutions ont la même valeur.

Tout n'est pas complètement justifié mais je suis très confiant .

Bravo à tous , je ne voyais pas une conclusion aussi synthétique

En plus la solution est constructible à la règle et au compas comme au temps de grand-papa .

Imod

  

Posté par
dpi
re : Le plus grand triangle 01-08-20 à 08:03

>Imod
Pour 7X7 /d'accord avec toi.
C'était effectivement un bel exercice.

Posté par
royannais
re : Le plus grand triangle 01-08-20 à 16:35

Bonjour et merci pour l'animation
En marge de ce débat passionnant je me suis amusé à inscrire un "équitriangle" isocèle dans un rectangle de 6 par 8. Si cela tente quelqu'un .....

Posté par
dpi
re : Le plus grand triangle 01-08-20 à 17:22

>royannais
Il fait partie de nos solution en fait c'est la pythagoricienne.

Posté par
Imod
re : Le plus grand triangle 01-08-20 à 18:31

Royannais cherche un equitriangle isocèle .

Imod

Posté par
dpi
re : Le plus grand triangle 01-08-20 à 21:22

Oui j'ai vu...
J'ai un équitriangle isocèle avec A=P=22.627417 (maxi 24)

Posté par
royannais
re : Le plus grand triangle 03-08-20 à 14:36

Bonjour dpi

Je n'arrive pas à trouver le configuration qui permet d'obtenir A =P = 22,6....
j'en suis à A= P = 21,93.... avec cette configuration

Le plus grand triangle

Posté par
dpi
re : Le plus grand triangle 03-08-20 à 15:57

Bonjour royannais

Avec un petit décalage symétrique:

Le plus grand triangle

Posté par
dpi
re : Le plus grand triangle 03-08-20 à 19:53

Mon rectangle avait un carreau de trop mais  le petit coté est bon...Le plus grand triangle

Posté par
Imod
re : Le plus grand triangle 04-08-20 à 10:17

Personnellement je suis toujours sur le problème initial dont j'essaie de justifier la solution "proprement" . La solution générale donnée par LittleFox est extrêmement simple mais passe par des calculs un peu ardus . En bref peut-on expliquer le résultat plus simplement .

J'ai essayé de prendre le problème à l'envers : on part d'un équitriangle et on cherche à l'inscrire dans un rectangle le plus petit possible .  Tout de suite deux questions se posent : comment dessiner simplement un équitriangle et qu'entend-on par plus petit rectangle ?

En fait la réponse à la première question est complètement évidente , ce sont les triangles dont le rayon du cercle inscrit vaut 2 . On retrouve au passage une justification à la limite inférieure de la largeur .

La réponse à la deuxième est moins claire  , disons qu'il y en a plusieurs correspondant aux situations suivantes :

Le plus grand triangle
Le plus grand triangle

Je ne sais pas si cette approche peut apporter quelque chose d'utile .

Imod

Posté par
LittleFox
re : Le plus grand triangle 04-08-20 à 13:36


C'est peut-être évident mais je ne l'aurais pas vu

Ça apporte de nombreuses simplifications

Trois possibilités:

- En mettant le cercle tangent au milieu d'un grand côté du rectangle, le triangle déborde du rectangle: Il n'y a pas de solution.
- Sinon, en mettant le cercle dans un coin du rectangle, le triangle déborde du rectangle: Il y a une solution intermédiaire où le triangle est juste sur le côté opposé et la solution vaut la moitié de l'aire du rectangle.
- Sinon, la solution est trouvée en mettant le triangle sur une diagonale et le cercle contre le petit côté du rectangle.

Posté par
Imod
re : Le plus grand triangle 04-08-20 à 18:16

C'est amusant de croiser les points de vue , je n'avais même pas remarqué que le cercle se baladait sur la longueur du rectangle

Imod

Posté par
Imod
re : Le plus grand triangle 05-08-20 à 12:07

@LittleFox

Après relecture à tête reposée de ton dernier message , je me suis rendu compte que je n'ai rien compris

J'ai toujours eu le cerf-volant .

Il y a un triangle dont le rayon du cercle inscrit vaut 2 et un rectangle . Si on impose le triangle , le cercle qui va avec s'appuiera sur un côté ou une diagonale du rectangle , ça c'est clair . Mais pour "le" ou "les" plus petits rectangles enfermant le triangle ....

Ce qui me gène c'est que tu considères à la fois que le triangle et le rectangle sont donnés .

Imod      

Posté par
LittleFox
re : Le plus grand triangle 05-08-20 à 12:36


Je considère que le rectangle est donné. Pas le triangle.

Pour un rectangle donné, il n'y a que deux triangles à considérer (et leur symétries).
- Soit le triangle a un côté confondu avec un grand côté du rectangle et le sommet opposé est sur le grand côté opposé. Le cercle est tangent à un grand côté du rectangle.
- Soit le triangle a un côté confondu avec une diagonale et le cercle est tangent à cette diagonale et à un petit côté du rectangle.

On peut remarquer aussi que le triangle avec la plus petite hauteur tout en ayant un côté confondu avec un grand côté du rectangle est obtenu en mettant le cercle au milieu du grand côté. Si cette hauteur est plus grande que le petit côté, alors il n'y a pas de triangle possible.


D'un autre côté, si on part du triangle (dans ce cas le triangle est donné, pas le rectangle):
Si celui-ci est aigu, alors seule la solution avec le plus grand côté du triangle confondu avec un grand côté du rectangle est possible.
S'il est obtus, alors les deux solutions sont possibles et il faut définir ce qu'on entend par plus petit rectangle

1 2 +


Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !