Inscription / Connexion Nouveau Sujet
Niveau troisième
Partager :

Problème de deux équations à deux inconnus

Posté par malv (invité) 09-06-05 à 19:04

                  Bonjour ,

Pouvez vous m'aider à résoudre ce problème s.v.p en m'expliquant comment vous avez fait ! Merci d'avance !

Lors d'un concours , les candidats passent deux épreuves : le francais ( coefficient 3 )et les maths ( coefficient 2 ) .
On calcule alors la moyenne pondérée des deux notes .
La note obtenue par Samir en maths est la meme que celle obtenue par Virginie en francais .
Coincidence :la note obtenue par Virginie en maths est aussi la meme que celle obtenue par Samir en francais ! Samir a eu 11 demoyenne alors que Virginie a eu 12 .
Quelles notes ont-ils obtenues dans chacune des deux disciplines ?

Posté par
lyonnais
re : Problème de deux équations à deux inconnus 09-06-05 à 19:20

salut malv :

notons xM la note de Samir en math
notons xF la note de Samir en français

notons yM la note de Virginie en math
notons yF la note de Virginie en math

On a : 3$ 11=\frac{2x_M+3x_F}{5}  <=>  55=2x_M+3x_F

de plus, on a : 3$ 12=\frac{2y_M+3y_F}{5}  <=>  3$ 60=2y_M+3y_F

Or on sait d'après l'énoncé que xM=yF   et  que  xF = yM

<=> 3$ 60=2y_M+3y_F  correspond à 3$ 60=3x_M+2x_F

On obtient donc le système suivant :

3$ \{{2x_M+3x_F=55 \\ 3x_m+2x_F=60

on résoud et on trouve xM = 14   et   xF = 9

je te laisse conclure ...

++

Posté par
etienne
re : Problème de deux équations à deux inconnus 09-06-05 à 19:29

Bonjour,

Soit x la note de Samir en français et la note de Virginie en maths, et y la note de Samir en maths et la note de Virginie en français.

La moyenne de Samir se calcule : \frac{3x+2y}{5}=11
Celle de Virginie est : \frac{3y+2x}{5}=12

D'où :
{ 3x+2y=55
{ 3y+2x=60

{ 6x+4y=110
{ 9y+6x=180

{ 3x+2y=55
{ 5y=70

{ 3x+2y=55
{ y=14

{ 3x+28=55
{ y=14

{ 3x=27
{ y=14

{ x=9
{ y=14

Samir a eu 9 en français et 14 en maths.
Virginie a eu 14 en français et 9 en maths.

Posté par malv (invité)maths 09-06-05 à 20:01

Merci à tous les deux !

Posté par
lyonnais
re : Problème de deux équations à deux inconnus 09-06-05 à 20:18

de rien malv, heureux d'avoir pu t'aider

PS : c'est bien, j'ai fait une parti et etienne a fait l'autre ... ça s'appelle la complémentarité

@+ sur l'
lyonnais



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1724 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !