Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

Produit Scalaire

Posté par
Tituya
23-04-19 à 19:48

Bonjour, j'ai un dm a rendre pour bientot, et je n'arrive pas une seule question. Je vous pose donc ici le sujet :

Dans la figure ci dessous, ABC est un triangle isocèle, ABD est équilatéral, I est le milieu du segment [AB] et J est le projeté de D sur la droite (AC)
(Image en PJ)

Voila la question : Calculer en fonction de a, les produits scalaires BD.BA et BD.AC (indication : calculer AJ).
Je n'arrive pas a trouver la réponse pour le produit scalaire de BD.AC. Avez vous une piste ?

Merci.

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 19:50

Voila l'image, j'avais fais une fausse manip

Produit Scalaire

Posté par
Barney
re : Produit Scalaire 23-04-19 à 19:55

Bonjour,

sans boule de cristal, je dois imaginer que a=AI  ?
je vais laisser mes collègues augurer...

Posté par
pgeod
re : Produit Scalaire 23-04-19 à 20:08

Pour chaque expression, utilise les projetés ortho.

Posté par
Fiirox
re : Produit Scalaire 23-04-19 à 20:11

Bonjour/bonsoir, tout d'abord il faut savoir que AB=a, ensuite pour le moment nous avons fait :
A est le projeté de B sur (AC)
J est le projeté de D sur (AC)
Ce qui nous donne : BD.AC= AJ.AC

Et de là nous ne savons pas quoi faire.

Posté par
Fiirox
re : Produit Scalaire 23-04-19 à 20:14

Fiirox @ 23-04-2019 à 20:11

Bonjour/bonsoir, tout d'abord il faut savoir que AB=a, ensuite pour le moment nous avons fait :
A est le projeté de B sur (AC)
J est le projeté de D sur (AC)
Ce qui nous donne : BD.AC= AJ.AC

Et de là nous ne savons pas quoi faire.
Si vous pouviez nous aiguiller un peu sur la question s'il vous plaît.

Posté par
carpediem
re : Produit Scalaire 23-04-19 à 20:16

salut

la relation de Chasles permet de répondre immédiatement ...

Posté par
Fiirox
re : Produit Scalaire 23-04-19 à 20:24

Excusez moi, mais je ne comprend pas bien comment on pourrait appliquer Chasles ici car on a : AJ.AC et non JA.AC si on inverse AJ cela nous donnerait -JA.AC et je ne pense pas que cela soit correct.

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 20:41

Excuser nous, mais le but de l'exercice est d'exprimer en fonction de a. Autrement dit en fonction de AB. Or on sait que AB et AC sont identiques car c'est un triangle isocèle.
Cherchons nous donc à exprimer le vecteur -JC en fonction de AC ? soit avec la relation de Chasles AJ ?
Tout ceci est extrêmement confus, et j'en suis désolé, pouvez vous nous expliquez plus en détail ?

Posté par
pgeod
re : Produit Scalaire 23-04-19 à 20:53

AJ = ID et [ID] est la hauteur d'un triangle équilatéral.

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 21:07

Bonsoir, je ne sais pas si ça peut aider, mais en sachant que ABD est équilatéral, AB = DB = DA. Et AB = a. Donc DB=a. De plus on sait que ABC est isocele en A. Donc AB = CA. Soit
AB= BD = DA = AC = a

Cela peut-il servir a quelque chose ?

Posté par
pgeod
re : Produit Scalaire 23-04-19 à 21:12

Ben oui, ca sert.

BD.AC = AJ.AC (en vecteurs
=  AC * AJ (en distances)
=  AC * ID (en distances)
= a * ID (ID est la hauteur d'un triangle équilatéral)
= ...

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 21:19

Je ne vois vraiment pas désolé, ID étant la hauteur du triangle équilatéral, existe t-il une sorte de formule spécial aux triangles de ce type ?
Pouvez vous m'aiguillez sur la bonne voie ? Je sais que le but est de ne pas donner des réponses comme ça. Mais j'ai vraiment du mal a cette exercice...

Posté par
pgeod
re : Produit Scalaire 23-04-19 à 21:24

Bien sûr, y'a une formule.
Calcule ID avec Pythagore dans triangle IBD rectangle en I.

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 21:31

Dans ce cas la, avec pythagore, on a ID=sqrt(a²-(a/2)) ?

Posté par
pgeod
re : Produit Scalaire 23-04-19 à 21:34

non.
c'est ID=sqrt(a²-(a/2)²)
simplifie.

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 21:42

Donc on a ID = a-(a/2) ?

Posté par
malou Webmaster
re : Produit Scalaire 23-04-19 à 21:49

Tituya @ 23-04-2019 à 21:42

Donc on a ID = a-(a/2) ?


là tu fais dans l'originalité....

Posté par
Tituya
re : Produit Scalaire 23-04-19 à 21:52

Désolé je suis fatigué
J'obtiens un truc comme ça, 1/2*3^(0.5)*a. Mais je suis pas franchement très très rassuré par ce résultat ...
Désolé

Posté par
pgeod
re : Produit Scalaire 23-04-19 à 22:16

1/2*3^(0.5)*a
c'est juste mais cela s'écrit plus simplement : a\frac{\sqrt{3}}{2}



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1742 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !