Inscription / Connexion Nouveau Sujet
Niveau enseignement
Partager :

Une fausse démonstration ?

Posté par
Sylvieg Moderateur
08-01-21 à 14:20

Bonjour,
J'ai du mal à ne pas critiquer l'énoncé donné dans ce sujet : Démonstration du théorème de Pythagore

Pour moi, le théorème de Pythagore n'est pas du tout démontré.
Il manque l'existence de la figure.
On part d'un carré de côté a+b.
En tournant autour, on place sur chaque côté un point à distance a du sommet.
Il faudrait démontrer qu'on obtient les sommets d'un autre carré, ce qui n'a rien d'évident.

Qu'en pensez-vous ?

Posté par
mathafou Moderateur
re : Une fausse démonstration ? 08-01-21 à 15:01

Bonjour,

"ce qui n'a rien d'évident."
hum :
rotation de centre le centre du grand carré et d'angle 90°
évidemment si on veut en rajouter une tartine ... il faudra prendre le plus grand soin aux axiomes que l'on choisit et aux théorèmes qu'on en déduit avant d'en arriver à ce point.

mais c'est vrai que cette partie de la démonstration est omise dans l'exo
jugée "une évidence" sans grand intérêt vu que l'exo porte avant tout sur des développements d'expressions

Posté par
Sylvieg Moderateur
re : Une fausse démonstration ? 08-01-21 à 15:19

Bonjour mathafou,

Citation :
rotation de centre le centre du grand carré et d'angle 90°
En seconde, est-ce assez maitrisé pour être ainsi utilisé ?
De toutes façons la question 7) ne demande pas de démontrer quelque chose, mais seulement de dire ce qui a été démontré auparavant.
Ce qui me choque, c'est le parachutage de la figure et l'énoncé qui affirme qu'il y a deux carrés.
On ne sait pas quelles sont les données pour la construire.

Et en fait, inutile de parler de rotation :
a et b étant 2 réels positifs, on construit un carré ABCD de côté a+b.
Sur le côté AB, le pont M défini par AM = a.
Idem pour N, P et Q.
Les triangles rectangles AQM, BMN, CNP et DPQ sont superposables.
Donc QM = MN = NP = PQ.
Le quadrilatère MNPQ est un carré car :
1) Ses angles sont droits.
2) Ses côtés sont égaux.

Posté par
carpediem
re : Une fausse démonstration ? 08-01-21 à 19:33

salut

je ne comprends pas trop : c'est un grand classique   et que l'on retrouve chaque année sur le site ...

"l'énoncé" est la figure (et ses informations : les lettres) avec la seule information supplémentaire : le grand quadrilatère est un carré (et en sachant que la somme des angle d'un triangle est pi)

...

Posté par
Sylvieg Moderateur
re : Une fausse démonstration ? 08-01-21 à 20:49

Bonsoir carpediem,
Oui sur le site de Wikipédia, mais pas dans l'énoncé de l'exercice :

Citation :
La figure est un carré dans un plus grand carré
Dans la figure ci-contre, Il y a un carré de côté c inscrit
dans un carré de côté a+b.

On obtient 4 triangles rectangles superposables.
On y part de 2 carrés et on obtient 4 triangles rectangles.
C'est l'inverse qu'il faut faire, comme dans Wikipédia : partir d'un triangle rectangle et construire un grand carré ; puis justifier que l'autre quadrilatère est aussi un carré.



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !