Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

algorithme

Posté par
narutonaruto
03-01-13 à 17:06

bonjour, on vient de commencer l'algorithmique et ça serait sympa si vous pouviez m'aider s'il-vous-plaît

voici l'énoncé:

On considère l'algorithme suivant:
1) Tester cet algorithme pour les valeurs suivantes de x: -1, 0, 1, 2, 3 et 5.
2) Expliquer les réponses obtenues pour les valeurs -1, 0 et 1.
3) Déterminer l'expression algébrique donnant y en fonction de x, définie par cet algorithme, ainsi que l'ensemble D des réels x pour lesquels elle définie.

voici l'algorithme:
variable:
-x est du type nombre
-y est du type nombre
début algorithme:
-lire x
-afficher "si x="
-afficher x
-afficher "alors"
   si (x>1) alors
    - début si
    - y prend la valeur 2/sqrt(x-1)
    - afficher "y="
    - fin si
       sinon
         - début sinon
         - afficher "impossible"
         - fin sinon
fin algorithme

Posté par
Glapion Moderateur
re : algorithme 03-01-13 à 18:03

Bonsoir, après le afficher "y=" il manque surement un afficher y

Et ben qu'est-ce qui t'empêche de le tester à la main ? les instructions sont très simples à exécuter. Il y en a que tu ne comprends pas ?

Posté par
narutonaruto
algorithme 03-01-13 à 18:08

ouais, il manque un  afficher y
mais je ne sais pas comment le tester

Posté par
Glapion Moderateur
re : algorithme 03-01-13 à 18:10

Tu peux exécuter les instructions à la main comme si tu étais la machine. tu peux aussi le rentrer dans un calculatrice ou algobox.

Posté par
narutonaruto
algorithme 03-01-13 à 18:25

comment on fait superieur dans algobox

Posté par
Glapion Moderateur
re : algorithme 03-01-13 à 18:32

>

Posté par
narutonaruto
algorithme 03-01-13 à 19:07

ça ne marche pas: ça dit: ***L'algorithme contient une erreur : impossible de le lancer***
***Vérifiez la syntaxe des affectations et des conditions***

algorithme

Posté par
Glapion Moderateur
re : algorithme 03-01-13 à 19:18

remplace déjà le 2sqrt(x-1) par 2*sqrt(x-1)

Posté par
narutonaruto
algorithme 04-01-13 à 11:11

1) pour -1 ça donne impossible, mais pour les autres ça continue de chercher... alors qu'est ce que je fais

algorithme

Posté par
narutonaruto
fonction 04-01-13 à 11:24

bonjour,
non c bon ça marche

mais pour la question 2) les valeurs -1, 0 et 1 donnent impossible, mais je ne sais pas comment justifier, moi je pense que c'est parce que la condition de l'algorithme est "si x>1 alors" est comme les valeurs "-1, 0 et 1" sont inférieur à 1, l'algorithme ne marche pas.

mais je n'est aucune idée pour la question 3)

Posté par
narutonaruto
fonction 04-01-13 à 11:36

alors

Posté par
narutonaruto
fonction 04-01-13 à 12:27

alors

Posté par
narutonaruto
algorithme 04-01-13 à 12:43

On considère l'algorithme suivant:
1) Tester cet algorithme pour les valeurs suivantes de x: -1, 0, 1, 2, 3 et 5.
2) Expliquer les réponses obtenues pour les valeurs -1, 0 et 1.
3) Déterminer l'expression algébrique donnant y en fonction de x, définie par cet algorithme, ainsi que l'ensemble D des réels x pour lesquels elle définie.

voici l'algorithme:
variable:
-x est du type nombre
-y est du type nombre
début algorithme:
-lire x
-afficher "si x="
-afficher x
-afficher "alors"
   si (x>1) alors
    - début si
    - y prend la valeur 2/sqrt(x-1)
    - afficher "y="
    - fin si
       sinon
         - début sinon
         - afficher "impossible"
         - fin sinon
fin algorithme

je ne trouve pas la réponse à la question 3)

Posté par
Glapion Moderateur
re : algorithme 04-01-13 à 15:35

Tu vois bien que la fonction dont l'algorithme donne les valeurs est y=2/(x-1) donc rien d'étonnant à ce que pour x=1 ça calcule un truc qui est infini et pour x=0 l'intérieur de la dérivée est négatif donc l'algorithme se déroute sur sa branche sinon et affiche impossible.

3) est tout simple, la fonction est y=2/(x-1) et le domaine de définition ]1;+[, tu aurais pu trouver ça tout seul, quand même

Posté par
narutonaruto
algorithme 05-01-13 à 16:41

merci pour ton aide



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1741 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !