Inscription / Connexion Nouveau Sujet
Niveau première
Partager :

Algorithme pour conjecturer une limite.

Posté par
FSA-T
17-04-12 à 23:38

Bonjour, ou bonsoir.

J'ai un exercice à faire et je bataille dessus. J'ai déjà fait la majeur partie de l'exercice mais je bloque vers la fin.

Voici l'énoncé:

U est une suite définie sur N par U0=0.001 et pour tout entier naturel n, Un+1=0.01Un2+Un+1.

1) Démontrer que la suite U est croissante.

2) Voici un algorithme:

ENTREE
   Saisir A
INITIALISATION
   n prend la valeur de 0
   U prend la valeur de 0.001
TRAITEMENT
Tant que U< ou = à A
   U prend la valeur de 0.01U2+U+1
   n prend la valeur de n+1
Fin Tant que
SORTIES
Afficher U et n.

   a) Faire tourner cet algorithme à la main en prenant A=5.

   b) Quel est le rôle de cet algorithme

   c) Coder le dans algobox et exécuter le programme avec A=100; A=1000 et A=1000000.

   d) Conjecturer la limite de la suite U.


3) On s'intéresse maintenant à la suite V définie par V0=1 et, pour tout
entier naturels n, Vn+1=\sqrt{1+Vn²}(le n de Vn² est en indice). Reprendre les question précédentes pour cette suite.

******************************************************************************

1) Alors j'ai réussie à démontrer que la suite u est croissante en faisant Un+1-Un

2) a) J'ai fais tourner l'algorithme à la main et je me suis vérifier avec algobox, les résultats sont les mêmes.
  
   b) Le rôle de l'algorithme est de conjecturer la limite d'une suite.

   c) J'ai coder l'algorithme sur algobox et j'ai fait avec 100; 1000 et 1000000.

   d) Pour la d) je n'arrive pas a conjecturer la limite de la suite.

Merci de bien vouloir m'apporter votre aide précieuse pour la suite ce cet exercice.

Posté par
thiblepri
re : Algorithme pour conjecturer une limite. 18-04-12 à 22:09

Bonjour,

Quels résultats trouves-tu pour 100; 1000 et 1000000?

Posté par
FSA-T
re : Algorithme pour conjecturer une limite. 20-04-12 à 22:48

Tout d'abord, Merci de ta réponse thiblepri.

Pour 10: n = 9 et U = 11.616998.
Pour 100: n = 17 et U = 117.46203.
Pour 1000000: n =  22 et U = 7.6064323e+9.

Voila merci.

Posté par
thiblepri
re : Algorithme pour conjecturer une limite. 23-04-12 à 21:05

Citation :
   b) Le rôle de l'algorithme est de conjecturer la limite d'une suite.


Je dirais plutôt que le rôle de l'algorithme est plutôt de savoir si la suite dépasse A à partir d'un certain rang et lequel. Tu vois pourquoi?

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 16-05-12 à 20:36

Bonsoir, j'ai ce même exercice à faire et j'ai beaucoup de mal à répondre aux questions.

1) Comment démontrer que la suite est croissante ? J'ai fait Un+1-Un=0.01Un2- (0.01*(Un-1)2+Un-1+1) et je ne vois pas comment développer pour obtenir quelque chose de cohérent.
2) a. Que veut dire "faire tourner cet algorithme à la main" ?
3) Mêmes difficultés que pour la suite précédente

Merci de votre aide !

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 09:48

1) Peut-on faire f(x)=Un dans ce cas là ce serait plus simple pour montrer que la suite est croissante, mais je ne suis pas sûre qu'on puisse faire ça avec une suite définie par récurrence ?

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 10:31

S'il vous plaît, personne pour m'aider ?

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 10:36

Bonjour

si Un+1 = 0.01Un2 + Un + 1

Alors Un+1 - Un = 0.01Un2 + Un + 1 - Un

Et cela ne donne pas ce que tu écris à 20h36

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 10:46

Ah 10h46 déjà déconnecté(e) ! Dommage !

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 10:50

Ahh d'accord, je comprends mieux, il suffisait juste de rajouter -Un, j'ai cherché trop compliqué !
Du coup Un+1-Un=0.01Un2+1 et ce résultat est supérieur ou égal à 0, donc la suite est croissante ! Merci beaucoup !

Pouvez-vous m'aider pour la suite de l'exercice ?

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 10:55

Que ne comprends tu pas dans la suite de l'exo ?

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:00

Pour la question a) que veut dire "faire tourner l'algorithme à la main" ?
Sinon j'ai réussi à répondre aux autres questions, par contre pour la deuxième suite question 3) je n'arrive pas à démontrer qu'elle est croissante.

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:04

cela veut dire regarder comment évoluent les variables

A vaut 5
n prend la valeur 0
U la valeur 0,01

U < 5 donc on fait U reçoit ... = et n reçoit n+1 soit 1

Le plus simple est de faire un tableau rapide avec les valeurs de A
, N et U

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:11

Je ne comprends pas très bien ce qu'il faut mettre dans le tableau

ANU
500.01un2+Un+1


Est-ce que c'est ça ? Et ensuite je dois rajouter quoi ?

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:21

Il faut faire

ANU
500
50 + 0 + 1 = 10 + 1 = 1
50,01*1 + 1 + 1 = ....1 + 1 = 2
5à calculer2 + 1 = 3


A continuer

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:23

Dans dernier post j'ai interverti N et U pardon !

Il faut faire

AUN
500
50 + 0 + 1 = 10 + 1 = 1
50,01*1 + 1 + 1 = ....1 + 1 = 2
5à calculer2 + 1 = 3


A continuer

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:31

Je crois avoir compris !

Cependant ce ne serait pas plutôt cela ?

ANU
500.001
50+1=10.01*0.0012+0.01+1
51+1=20.01*1.0012+0.01+1
etcetcetc

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:33

La première valeur de U est 0
La seconde 0,01*0 + 0 + 1 = 1
La 3ème est 0,01*1 + 1 + 1 = .... etc ...

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:34

Pardon, je n'avais pas vu que dans votre tableau U et N étaient inversés, ça revient donc au même !

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:34

PArdon , tu a raison .... je confonds avec un autre sujet ....

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:34

La première valeur de U n'est pas 0.001 ?

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:34

U0 = 0,01 .... en effet !

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:38

Ok, ce n'est pas grave !

J'en ai enfin fini avec cette suite !
Maintenant il me reste la deuxième :  Vn+1=1+Vn2
Comment montrer qu'elle est croissante ?

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:40

Si je fais Vn+1-Vn, j'obtiens 1+Vn2-Vn, comment faire après ?

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:42

En calculant Vn+1 - Vn

En mettant Vn2 en facteur sous le   et en sortant |Vn| du

Posté par
jeveuxbientaider
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:43

Je dois me déconnecter , quelqu'un prendra peut-être la suite.

Posté par
Johanna11
re : Algorithme pour conjecturer une limite. 17-05-12 à 11:44

D'accord, merci beaucoup pour votre aide !



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1742 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !