Bonsoir, je sollicite votre aide pour une remise au point; voilà je ne sais plus trop comment montrer la convergence d'une suite définie par une somme;
Soit
On me demande d'établir que (Un) est une suite convergente.
J'ai dans un premier temps montré qu'elle était décroissante.
Dois-je maintenant montrer qu'elle est minorée en trouvant la limite quand n tend vers +inf ?
Si oui, limite de quoi ?
Merci, Xeny.
bonjour,
NON tu dois prouver qu'elle est minorée pour prouver quelle est convergente ...
Tu vois la différence entre ce que j'ai écrit et ce que tu as écrit ...
Et si tu es en TER S pourquoi poster en 1ère ? On a besoin de connaître ton niveau pour adapter nos réponses à ton niveau !
Bonsoir, oui elle est bien décroissante. tu l'as démontré comment ?
Pour la minorer, tu dis qu'elle est plus grande que n fois son terme le plus petit (et plus grande que n fois son terme le plus grand si tu veux aussi).
ça tend vers ln2 je crois
encore plus simple elle est positive , alors un minorant simple est ...
Mais ma remarque de 23h20 était là pour faire comprendre à Xeny qu'il fallait utiliser les théorèmes et propriétés utilisées correctement ...
La phrase ""Si .... alors ____""" n'est pas équivalente à """si _____ alors .....""
sauf si on a la phrase :
".... si et seulement si _____ "
Je me suis trompé, je suis bien en Ter.
Sinon, Jeveuxbientaider, non je ne vois pas la différence entre ce que vous avez écrit et ce que j'ai écrit. Et justement, comment prouver qu'elle est minorée, voilà ma question ? limite ?
Sinon Glapion, je ne comprends pas votre méthode.
Pour montrer la décroissance j'ai calculé Un+1-Un.
Pouvez-vous détaillez un peu plus, s'il vous plaît ?
J'aurais une petite question. Cette suite est vraiment décroissante ?!
Mais peut-importe les calculs, cette suite est une somme de termes positif, comment pourrai-elle être décroissante ?
Bon ok, entre k=1 et k=n il y a une différence, ce doit être l'heure.
Oui donc c'est bien ça.
Toute suite positive strictement décroissante sera toujours minoré par 0.(étant donné quelle ne peut pas être négative.)
Attention, minoré par 0 au sens large, elle peut très bien être minorée par 1.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :