Bonjour à tous, je dois établir un tableau de variation pour la fonction g(x)=(x²+x-1)/(x-2). Or celle-ci varie positivement à plusieurs reprises, je ne sais pas comment la représenter.
J'apprécierais votre aide,
Benjamin
Salut,
Technique habituelle à priuori : dérivée, signe de la dérivée et variations...
Tu as un ensemble de définition donné ?
bonjour
qu'entends-tu par "varie positivement ?"
tu as établi la dérivée? étudié son signe ?
que trouves-tu ?
Je m'excuse mais quesque la dérivée? Il m'est demandé d'établir un tableau de variation. Cependant, je ne sais pas si je représente -->(vers le bas) II(valeur interdite) -->(vers le bas) ou le contraire(vers le haut) puisqu'elle est croissante puis décroissante...
tu n'as pas encore étudié les dérivées ?
dans ce cas, écris énoncé complet, il y a peut-être des pistes pour te guider, ne serait-ce que pour nous indiquer le domaine d'étude.
sinon, la courbe de la fonction a cette allure :
cela ne traduit pas la variation que tu as décrite, il me semble.
Voici l'énoncé de l'exercice:
Le doute au sujet du tableau est que la courbe en ordonné est croissante de x -infini à +-1 puis à nouveau de +-3 à +infini. C'est mon ce qui me pose problème pour tracer ce tableau
Étudier soigneusement les deux fonctions suivantes
x²+x-1 et x² et (x²+x-1)/(x-2).
Pour l'étude g on vérifiera que (x²+x-1)/(x-2)=x+3+(5/x-2)
Je vous demande pardon, j'ai fait une erreur en écrivant la 2ème fonction, il y en a que deux. Sauriez-vous au moins me dire comment je dois représenter le tableau de variation. Deux fois décroissant ou deux fois croissant?
Je vous remercie
g(x) = (x²+x-1)/(x-2)
x - x1 2 x2 +
g(x) croiss decroiss // decroiss croiss
cette variation confirme le graphique que je t'ai montré,
x1 et x2 étant les racines de la dérivée.
mais sans étude de la dérivée, ce tableau va tomber comme un cheveu sur la soupe :/
Merci pour votre aide. Mon professeur est un peu fou, nous introduisons un chapitre en faisant un DM mais sans connaissance sur ce chapitre, pas facile de comprendre...
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :