Inscription / Connexion Nouveau Sujet
Forum Améliorations fiches
Partager :

NEWTON-RAPHSON et les MATHS FINANCIERES

Posté par
macontribution
16-12-18 à 10:32

Bonjour

I - LE CAS A RESOUDRE

Une société contracte un emprunt indivis d'un montant de 2 000 000,00   d'euros, remboursable au moyen de
20   annuités constantes de 215 000,00   euros chacune, la première payable 1 an après la souscription de l'emprunt.

Il est demandé de calculer le taux d'intérêt annuel de cet emprunt.

II - UNE PROPOSITION DE SOLUTION

Il s'agit de résoudre un problème de mathématiques financières suivant la méthode dite des intérêts composés, et de calculer la valeur actuelle (ou la valeur à l'origine) d'une suite d'annuités constantes de fin de périodes.

A - DEFINITION

On appelle VALEUR ACTUELLE ou valeur à l'origine d'une suite d'annuités, qui sera désigné par "C", le total exprimé UNE PERIODE AVANT LE VERSEMENT DE LA PREMIERE ANNUITE des valeurs respectives de chacune de ces annuités, exprimées à cette date "0", en usant du taux d'intérêt périodique "i" pour 1.

B - LA FORMULE de MATHEMATIQUES FINANCIERES A UTILISER

On a la formule suivante  :

C  = a   {    [ 1 - (1+i)¯?  ] / i }

Avec :

C = capital emprunté
a = montant périodique remboursé
n = nombre de périodes de remboursement i  = taux d'intérêt périodique pour 1 (unité monétaire)

Cette formule appelle les remarques suivantes :

1 - REMARQUE 1

On est en présence d'une formule qui comporte 4 inconnues.
Si on connait 3 éléments il est possible de déterminer le quatrième élément manquant.

2 - REMARQUE 2

a) Si l'élément manquant restant à calculer est :

* soit le capital
* soit le montant du remboursement périodique * soit la durée

il est relativement facile de calculer cet élément manquant.

b) Par contre, si l'élément manquant est le taux periodique d'intérêt, la détermination de ce dit taux est disons?..très laborieuse.

On peut "approcher" le taux en utilisant :

b1) les tables financières et en particulier la table IV intitulée "VALEUR ACTUELLE D'UNE SUITE DE "n" ANNUITES DE 1 EURO"

On déterminera le taux en lisant la table et en effectuant, le cas échéant, une interpolation.

b2) Utiliser un logiciel ou une calculatrice perfectionnée qui nous donnera le résultat

b3) utiliser un logiciel graphique, traceur de fonction, qui permettra de trouver la solution graphique

b4) une approche par calculs successifs qui permettra de trouver le taux le plus proche de la réalité : on peut qualifier cette méthode de "primitive" ou de "simpliste"?..mais elle est efficace car, avec un certain temps pour effectuer les calculs??.on a un"bon" résultat.

b5) et, enfin une approche par calculs successifs, en utilisant la méthode de calcul de NEWTON-RAPHSON : il s'agit d'une "vraie méthode mathématique" élaborée par NEWTON et RAPHSON et qui va être exposée dans la suite de cette étude.

malou > pour supérieur/BTS

Posté par
macontribution
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 10:36

III - LA METHODE DE NEWTON-RAPHSON APPLIQUEE AUX MATHEMATIQUES FINANCIERES

A - DEFINITION DE LA METHODE DE NEWTON-RAPHSON

Je ne suis pas un spécialiste de NEWTON-RAPHSON et je me permets de donner la définition (peut être incomplète) que j'ai touvée sur internet.

En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson1 est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle.
Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Thomas Simpson (1710-1761) élargit considérablement le domaine d'application de l'algorithme en montrant, grâce à la notion de dérivée,  comment on pouvait l'utiliser pour calculer une solution d'une équation non linéaire, pouvant ne pas être un polynôme, et d'un système formé de telles équations.

B - MISE EN APPLICATION DE LA METHODE DE NEWTON-RAPHSON

1) LA FORMULE DE MATHEMATIQUES FINANCIERES

Il s'agit, ici, de la formule de calcul suivante :

C  = a   {    [ 1 - (1+i)¯ⁿ  ] / i }

Avec :

C = capital emprunté
a = montant périodique remboursé n = nombre de périodes de remboursement i = taux d'intérêt périodique pour 1 (unité monétaire)

Il s'agit de calculer  l'élément manquant à savoir : "i"  = taux d'intérêt périodique pour 1 (unité monétaire)

2) TRANSFORMATION DE LA FORMULE EN FONCTION

On va "manipuler" la formule pour introduire une fonction devant s'annuler et être égale à "zéro".

On a :

C  = a   {    [ 1 - (1+i)¯ⁿ  ] / i }

On passe "i" de l'autre coté de l'égalité et on obtient :

C * i  = a     [ 1 - (1+i)¯ⁿ  ]

On passe "a" de l'autre coté de l'égalité et on obtient :

( C*i / a)   = 1 - (1+i)¯ⁿ  

On passe  -(1+i)¯ⁿ de l'autre coté de l'égalité et on obtient :

(1+i)¯ⁿ    + (C*i/a)  =  1

On passe (+) 1 de l'autre coté de l'égalité est on obtient :

(1+i)¯ⁿ    + (C*i/a)   - 1   =  0

Nous avons établi la fonction du taux d'intérêt qui est la suivante :

f(i) )  = (1+i)¯ⁿ    + (C*i/a)   - 1  

3) CALCUL DE LA DERIVEE DE LA FONCTION : f(i) )  = (1+i)¯ⁿ    + (C*i/a)   - 1  

On désignera cette dérivée sous le terme : f'(i)

a) le premier terme de la fonction est : (1+i)¯ⁿ  

La dérivée est : - n ( 1+i) ¯⁽ⁿ⁺¹⁾

Il faut bien noter que la puissance de (1+i) est : -(n+1)

b) le deuxième terme de la fonction est : (C*i/a)  

La dérivée est : (C / a )

c) le troisième terme de la fonction est : -1

La dérivée est : ZERO

d) En définitive on a la dérivée suivante :

f'(i) = - n ( 1+i) ¯⁽ⁿ⁺¹⁾  + (C / a )


4) CALCUL DU TAUX PAR LA METHODE de NEWTON-RAPHTON

On construit par récurence la suite suivante :

i₁ =  i₀    -  [  f(i₀)  /  f'(i₀) ]

qui se présente aussi sous la forme complète, à savoir :

i₁ =  i₀    -  {   [ (1+i₀)¯ⁿ    + (C*i₀ /a)   - 1  ]  /  [ - n ( 1+i₀) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

En calculant par récurence i₁, i₂, i₃ etc…..on obtient le taux d'intérêt recherché proche de la réalité.

NB : "i₀" est choisi arbitrairement soit "au doigt mouillé par temps de tempète", soit "à vue de nez"  mais en prenant de bonnes lunettes.

Posté par
macontribution
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 10:41

C - APPLICATION NUMERIQUE

On reprend les éléments donnés dans l'énoncé ci-dessus, au point I) à savoir :

C = capital emprunté = 2 000 000,00   a = montant périodique remboursé l'annuité = 215 000,00   n = nombre de périodes de remboursement = 20,00   i  = taux d'intérêt périodique pour 1 (unité monétaire) = à calculer
et arbitrairement on prend : i₀ = 0,0500000000   pour 1 par période soit 5,00000000   % par période.

1) PREMIERE ITERATION

        Arbitrairement au prend : i₀ = 0,0500000000   pour 1 par période
et on a :
(1+i₀ ) = 1,0500000000  
n = 20,00  
n+1 = 21,00  
(1+i₀ ) ¯ⁿ= 0,37688948  
(1+i₀ ) ¯⁽ ⁿ⁺¹⁾ = 0,35894236  
- n(1+i₀ ) ¯⁽ ⁿ⁺¹⁾ = -7,17884729  
(C*i₀ /a)  = 0,46511628  
(C/a) = 9,30232558  
On a la formule :

i₁ =  i₀    -  {   [ (1+i₀)¯ⁿ    + (C*i₀ /a)   - 1  ]  /  [ - n ( 1+i₀) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

i₁ =  0,05000000  - {  [ 0,37688948 + 0,46511628 -1 ] / [ -7,17884729   + 9,30232558   ]
i₁ =   0,05000000   - {   -0,15799424   / 2,12347829   }
i₁ =   0,05000000   + 0,07440351
i₁ =   0,1244035100  

Le taux à prendre dans l'itération suivante est :i₁ =  0,1244035100   pour 1 par période


2) DEUXIEME  ITERATION
On prend i₁ = 0,1244035100   pour 1 par période
et on a :
(1+i₁ ) = 1,1244035100  
n = 20,00  
n+1 = 21,00  
(1+i₁ ) ¯ⁿ= 0,09584206  
(1+i₁ ) ¯⁽ ⁿ⁺¹⁾ = 0,08523814  
- n(1+i₁ ) ¯⁽ ⁿ⁺¹⁾ = -1,70476276  
(C*i₁ /a)  = 1,15724195  
(C/a) = 9,30232558  
On a la formule :

i₂ =  i₁    -  {   [ (1+i₁)¯ⁿ    + (C*i₁ /a)   - 1  ]  /  [ - n ( 1+i₁) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

i₂ =   0,12440351   - {  [ 0,09584206   + 1,15724195   -1 ] / [ -1,70476276   + 9,30232558   ]
i₂ =   0,12440351   - {   0,25308401   / 7,59756282   }
i₂ =   0,12440351   - 0,033311211
i₂ =   0,0910922994  

Le taux à prendre dans l'itération suivante est : i₂ =   0,0910922994   pour 1 par période


3) TROISIEME  ITERATION
On prend i₂ = 0,0910922994   pour 1 par période
et on a :
(1+i₂ ) = 1,0910922994  
n = 20,00  
n+1 = 21,00  
(1+i₂ ) ¯ⁿ= 0,17489210  
(1+i₂ ) ¯⁽ ⁿ⁺¹⁾ = 0,16029084  
- n(1+i₂ ) ¯⁽ ⁿ⁺¹⁾ = -3,20581673  
(C*i₂ /a)  = 0,84737023  
(C/a) = 9,30232558  
On a la formule :

i₃ =  i₂    -  {   [ (1+i₂)¯ⁿ    + (C*i₂ /a)   - 1  ]  /  [ - n ( 1+i₂) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

i₃ =   0,09109230   - {  [ 0,17489210   + 0,84737023   -1 ] / [ -3,20581673   + 9,30232558   ]
i₃ =   0,09109230   - {   0,02226232   / 6,09650885   }
i₃ =   0,09109230   - 0,003651651
i₃ =   0,0874406481  

Le taux à prendre dans l'itération suivante est : i₃ =   0,0874406481   pour 1 par période


4) QUATRIEME  ITERATION
On prend i₃ = 0,0874406481   pour 1 par période
et on a :
(1+i₃ ) = 1,0874406481  
n = 20,00  
n+1 = 21,00  
(1+i₃ ) ¯ⁿ= 0,18702030  
(1+i₃ ) ¯⁽ ⁿ⁺¹⁾ = 0,17198207  
- n(1+i₃ ) ¯⁽ ⁿ⁺¹⁾ = -3,43964149  
(C*i₃ /a)  = 0,81340138  
(C/a) = 9,30232558  
On a la formule :

i₄ =  i₃    -  {   [ (1+i₃)¯ⁿ    + (C*i₃ /a)   - 1  ]  /  [ - n ( 1+i₃) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

i₄ =   0,08744065   - {  [ 0,18702030   + 0,81340138   -1 ] / [ -3,43964149   + 9,30232558   ]
i₄ =   0,08744065   - {   0,00042168   / 5,86268409   }
i₄ =   0,08744065   - 0,000071925  
i₄ =   0,0873687227  

Le taux à prendre dans l'itération suivante est : i₄ =   0,0873687227   pour 1 par période


5) CINQUIEME  ITERATION
On prend i₄ = 0,0873687227   pour 1 par période
et on a :
(1+i₄ ) = 1,0873687227  
n = 20,00  
n+1 = 21,00  
(1+i₄ ) ¯ⁿ= 0,18726787  
(1+i₄ ) ¯⁽ ⁿ⁺¹⁾ = 0,17222113  
- n(1+i₄ ) ¯⁽ ⁿ⁺¹⁾ = -3,44442256  
(C*i₄ /a)  = 0,81273230  
(C/a) = 9,30232558  
On a la formule :

i₅ =  i₄    -  {   [ (1+i₄)¯ⁿ    + (C*i₄ /a)   - 1  ]  /  [ - n ( 1+i₄) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

i₅ =   0,0873687227   - {  [ 0,18726787   + 0,81273230   -1 ] / [ -3,44442256   + 9,30232558   ]
i₅ =   0,0873687227   - {   0,00000017   / 5,85790302   }
i₅ =   0,0873687227   - 0,00000003  
i₅ =   0,0873686933  

Le taux à prendre dans l'itération suivante est : i₅ =   0,0873686933   pour 1 par période


6) SIXIEME REITERATION
On prend i₅ = 0,0873686933   pour 1 par période
et on a :
(1+i₅ ) = 1,0873686933  
n = 20,00  
n+1 = 21,00  
(1+i₅ ) ¯ⁿ= 0,18726797  
(1+i₅ ) ¯⁽ ⁿ⁺¹⁾ = 0,17222123  
- n(1+i₅ ) ¯⁽ ⁿ⁺¹⁾ = -3,44442451  
(C*i₅ /a)  = 0,81273203  
(C/a) = 9,30232558  
On a la formule :

i₆ =  i₅    -  {   [ (1+i₅)¯ⁿ    + (C*i₅ /a)   - 1  ]  /  [ - n ( 1+i₅) ¯⁽ⁿ⁺¹⁾  + (C/a)  ]   }

i₆ =   0,0873686933   - {  [ 0,18726797   + 0,81273203   -1 ] / [ -3,44442451   + 9,30232558   ]
i₆ =   0,0873686933   - {   0,00000000   / 5,85790107   }
i₆ =   0,0873686933   - 0,00000000000  
i₆ =   0,0873686933  

FIN des réitérations car on soustrait la somme de 0,0000000000  

7) TABLEAU RECAPITULATIF DES REITERATIONS

* Départ taux arbitraire  : le taux d'intérêt "i" est de  : 0,05000000000   pour 1 par période
* Réitération n° 1 = le taux d'intérêt "i" est de  : 0,12440350999   pour 1 par période
* Réitération n° 2 = le taux d'intérêt "i" est de  : 0,09109229941   pour 1 par période
* Réitération n° 3 = le taux d'intérêt "i" est de  : 0,08744064807   pour 1 par période
* Réitération n° 4 = le taux d'intérêt "i" est de  : 0,08736872268   pour 1 par période
* Réitération n° 5 = le taux d'intérêt "i" est de  : 0,08736869333   pour 1 par période
* Réitération n° 6 = le taux d'intérêt "i" est de  : 0,08736869333   pour 1 par période

8) CONCLUSION

Le taux d'emprunt est de 0,08736869333   pour 1 soit un taux périodique de 8,736869333   %.

Posté par
macontribution
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 10:43

D) VERIFICATION DE LA SOLUTION PROPOSEE


1) En appliquant la formule de calcul du capital, à savoir :

C  = a   {    [ 1 - (1+i)¯ⁿ  ] / i }

avec :
C = Capital emprunté, à calculer à titre de contrôle du taux, on doit trouver : 2 000 000,00  
a = montant périodique remboursé = 215 000,00  
n = nombre de périodes de remboursement 20,00  
i  = taux d'intérêt périodique pour 1 (unité monétaire) 0,08736869333   pour 1

On a :

C = 215 000,00   {  [   1 -( 1,08736869333   ¯ⁿ )  ] / 0,08736869333   }
C = 215 000,00   {  [   1 -( 0,18726796901   )  ] / 0,08736869333   }
C = 215 000,00   { [ 1 -0,18726796901   ]  / 0,08736869333   }
C = 215 000,00   * 0,81273203099   / 0,08736869333  
C = 174 737,38666373   / 0,087368693
C = 2 000 000,000000  

On retrouve bien le capital de 2 000 000,00  

2) En établissant le "Juge de Paix" : LE TABLEAU DE REMBOURSEMENT DE L'EMPRUNT

Je laisse au lecteur le soin de présenter le tableau de remboursement de l'emprunt.

Posté par
macontribution
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 10:46

IV - ET POUR ALLER PLUS LOIN……

Au lecteur de trouver la formule de réitération qui permet de trouver le taux périodique "i" pour 1 de
la formule de mathématiques financières suivante :

VALEUR ACQUISE par une SUITE de "n" ANNUITES de 1 EURO :

V(n) = a {  [ (1+i)ⁿ  - 1 ] / i  }

avec :
V(n) = valeur acquise
a = montant périodique versé
i = taux d'intérêt périodique exprimé pour 1 euro
n = nombre de versements périodiques

Travail à faire :

1) Etablir la formule de calcul du taux suivant la méthode de NEWTON-RAPHSON

2) Vérifier la formule établie au point 1) ci-dessus en résolvant le cas suivant :

La valeur acquise par une suite de 15   annuités constantes, égales chacune à
10 000,00   euros est de 275 363,59   euros.


On demande :

a) quel est le taux de capitalisation annuel en appliquant la méthode des intérêts composés.
b) établir, à titre de contrôle, le tableau de capitalisation.

A relire à "tête reposée".

Bonne journée ou bonne soirée.

Posté par
malou Webmaster
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 11:34

Bonjour macontribution
c'est digne d'une fiche, non ? qu'en penses-tu ?

Posté par
carpediem
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 11:38

salut

un très bel exposé propre et complet ...

qu'on aurait éventuellement pu condenser dans la manipulation d'équation et le calcul de la dérivée ... mais à destination des BTS ils seront comptant

deux remarques :

il n'y a pas quatre inconnues il y a quatre variables ... dans une relation et cette relation permet d'obtenir la quatrième (plus ou moins facilement) à partir de la connaissance de trois autres

C = a \dfrac {1 - (1 + i)^{-n}}i \iff i = \dfrac a C [1 - (1 + i)^{-n}]

est une relation de la forme i = f(i) qui est un classique pour appliquer la méthode proposée de N-R à condition que la dérivée ne s'annule pas dans un voisinage de la solution ce qui n'est évidemment pas le cas ...

mais cette relation est un classique du principe de récurrence u_{n + 1} = f(u_n) qui peut se résoudre sans N-R

une condition (moins (ou plus) restrictive) suffisante est que la fonction soit contractante (localement)

par contre il me semble que la méthode de N-R est relativement" très rapide" par rapport à une récurrence "simple"

bon dimanche

Posté par
carpediem
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 11:39

Citation :
mais à destination des BTS ils seront comptant
enfin ils seront contents d'avoir une solution au comptant !!!

Posté par
malou Webmaster
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 11:45

j'allais te mettre en boîte sur ça ! mais tu as été plus vite que moi !

Posté par
macontribution
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 12:10

Bonjour à tous

Je vous remercie de vos remarques.

Pour MALOU

Vous avez écrit  :

"c'est digne d'une fiche, non ? qu'en penses-tu ?"


C'est une proposition que je ne puis refuser… MAIS à une seule condition : qu'une personne qui maitrise les "bons" termes mathématiques corrige cette fiche, ma spécialité, et même mon expertise,  étant la Comptabilité et l'Audit.

Pour CARPEDIEM :

J'ai lu avec attention vos remarques ; je vous remercie de les avoir formulées et je suis d'accord avec les différents points soulevés, car comme je l'ai écrit ci-dessus,  je connais mes "limites" en mathématique pure.


Je penses a certains étudiants qui sont d'un niveau supérieur au BTS qui vont être, aussi,  "contents".

Posté par
malou Webmaster
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-12-18 à 12:16

OK
bon, je la bascule dans le forum "amelioration de fiches" pour ne pas la perdre
et quand j'ai un moment, je m'y colle

Posté par
malou Webmaster
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-01-19 à 13:35

misère...la galère ....bon, ben ça prendra le temps que ça prendra !
et à la fin je demanderai une relecture, parce que rien ne tient au "copier-coller" !!
et en plus, cerise sur le gâteau, j'y connais rien !

Posté par
macontribution
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-01-19 à 14:28

Bonjour MALOU

Je vais relire en détail cette étude.

Si, des fois, votre cerise n'est pas sur le gâteau, je me ferrais un plaisir de vous aider pour la ramasser, car vous devez savoir que j'ai appris ENORMEMENT de connaissances  en lisant les messages des divers intervenants de ce site.

Posté par
malou Webmaster
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-01-19 à 14:36

OK, merci ! j'avance tout doucement...là je reprends calmement toutes les formules,ligne par ligne, car les exposants, indices et autres ne sont pas passées
et j'essaie même de comprendre en même temps !
je remettrai un message ici quand j'aurai besoin d'aide !
bonne journée !

Posté par
malou Webmaster
re : NEWTON-RAPHSON et les MATHS FINANCIERES 16-01-19 à 18:53

bon...ai eu des ennuis de mise en ligne que j'ai du contourner...galère...
mais c'est ici [lien]

et pour la retrouver ou l'indiquer à des élèves
aller dans fiches, puis BTS
NEWTON-RAPHSON et les MATHS FINANCIERES



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !