logo

Fiche de mathématiques






I. Théorème de Thalès

1. Rappel (4ème)

Le théorème de Thalés et sa réciproque - troisième : image 1
Dans un triangle ABC,
si M est un point du côté [AB], N un point du côté [AC],
et si les droites (BC) et (MN) sont parallèles, alors : \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}} = \dfrac{\text{MN}}{\text{BC}}


Autre configuration connue :
Le théorème de Thalés et sa réciproque - troisième : image 2

2. Exercice découverte : nouvelle configuration de Thalès

On considère la figure suivante :
Le théorème de Thalés et sa réciproque - troisième : image 3
Les droites (d) et (d’) sont sécantes en A ;
B et M sont deux points de la droite (d), distincts de A ;
C et N sont deux points de la droite (d’), distincts de A ;
les droites (BC) et (MN) sont parallèles.
a) Par la symétrie de centre A, construire les points M’ et N’, symétriques respectifs des points M et N.
b) Que peut-on dire des droites (M’N’) et (BC) ? Expliquer.
c) Expliquer pourquoi AM’ = AM, AN’ = AN et MN = M’N’.
d) Expliquer pourquoi \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}} = \dfrac{\text{MN}}{\text{BC}}.

Solution :
a)
Le théorème de Thalés et sa réciproque - troisième : image 4

b) On sait que les points M’ et N’ sont les symétriques respectifs des points M et N par rapport au point A. Donc (M’N’) est la symétrique de (MN) par rapport à A.
Or, la symétrique d’une droite par rapport à un point est une droite parallèle.
On en déduit que les droites (MN) et (M’N’) sont parallèles.
De plus, on sait que les droites (MN) et (BC) sont parallèles.
Or, si deux droites sont parallèles, alors toute parallèle à l’une est parallèle à l’autre.
On en conclut que les droites (M’N’) et (BC) sont parallèles.

c) On sait que M’ est le symétrique de M par rapport à A, donc AM’ = AM.
On sait que N’ est le symétrique de N par rapport à A, donc AN’ = AN.
Les segments [MN] et [M’N’] sont symétriques par rapport à A. Or, la symétrie centrale conserve les longueurs, donc MN = M’N’.

d) Dans le triangle ABC, M’ est un point du côté [AB], N’ est un point du côté [AC] et les droites (M’N’) et (BC) sont parallèles, alors \dfrac{\text{AM'}}{\text{AB}} = \dfrac{\text{AN'}}{\text{AC}} = \dfrac{\text{M'N'}}{\text{BC}}.
Or, on a montré que AM’ = AM, AN’ = AN et que M’N’ = MN, donc : \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}} = \dfrac{\text{MN}}{\text{BC}}.

3. Conclusion

Les trois configurations de Thalès :
Le théorème de Thalés et sa réciproque - troisième : image 5
Théorème de Thalès :
Soient (d) et (d’) sont deux droites sécantes en A,
Soient B et M deux points de la droite (d), distincts de A,
Soient C et N deux points de la droite (d’), distincts de A.
Si les droites (BC) et (MN) sont parallèles, alors : \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}} = \dfrac{\text{MN}}{\text{BC}}.



4. Exemple

Le théorème de Thalés et sa réciproque - troisième : image 6
Sur la figure ci-dessus, on donne :
AB = 12 cm, AN = 4cm, AC = 6 cm, MN = 3 cm.
Les droites (BC) et (MN) sont parallèles.
Calculer AM, puis BC.

Solution :
Les droites (BM) et (CN) sont sécantes en A, les droites (BC) et (MN) sont parallèles.
Donc, d’après le théorème de Thalès, on a : \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}} = \dfrac{\text{MN}}{\text{BC}},
c’est-à-dire : \dfrac{\text{AM}}{12} = \dfrac{4}{6} = \dfrac{3}{\text{BC}}.
* De \dfrac{\text{AM}}{12} = \dfrac{4}{6}, on déduit que : AM = \dfrac{4 \times 12}{6} = \dfrac{4 \times 6 \times 2}{6} = 8
Donc : AM = 8 cm
* De \dfrac{4}{6} = \dfrac{3}{BC}, on déduit que : BC = \dfrac{6 \times 3}{4} = \dfrac{2 \times 3 \times 3}{2 \times 2} = \dfrac{9}{2} = 4,5
Donc : BC = 4,5 cm


II. Réciproque du théorème de Thalès

Le théorème de Thalés et sa réciproque - troisième : image 5
Données :
\dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}}
A, B, M et A, C, N sont alignés dans le même ordre.
Réciproque du théorème de Thalès :
Soient (d) et (d’) deux droites sécantes en A,
Soient B et M deux points de (d), distincts de A,
Soient C et N deux points de (d’), distincts de A.
Si \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}} et si les points A, B, M et les points A, C, N sont dans le même ordre,
alors les droites (BC) et (MN) sont parallèles.

Exemple :
Le théorème de Thalés et sa réciproque - troisième : image 7
Sur la figure ci-dessus, les points A, M, B et A, N, C sont alignés.
Montrer que les droites (MN) et (BC) sont parallèles.

Solution :
On a : \dfrac{\text{AM}}{\text{AB}} = \dfrac{9}{5,4} = \dfrac{90}{54} = \dfrac{5 \times 18}{3 \times 18} = \dfrac{5}{3} et \dfrac{\text{AN}}{\text{AC}} = \dfrac{17,5}{10,5} = \dfrac{175}{105} = \dfrac{5 \times 35}{3 \times 35} = \dfrac{5}{3}.
Donc : \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AN}}{\text{AC}}.
De plus, les droites (BM) et (CN) sont sécantes en A, les points C, A, N sont alignés dans le même ordre que les points B, A, M.
D’après la réciproque du théorème de Thalès, on en déduit que les droites (BC) et (MN) sont parallèles.


III. Construction de points

On peut aussi utiliser le théorème de Thalès pour placer des points.

1. Construction : \dfrac{\text{AM}}{\text{AB}} = \text{k}

Exercice :
Placer deux points A et B.
Tracer à la règle non graduée et au compas le point M du segment [AB] qui vérifie \dfrac{\text{AM}}{\text{AB}} = \dfrac{4}{7}.

Solution :
- On trace une demi-droite [Ax).
- On choisit une ouverture de compas et on trace sur [Ax) sept segments consécutifs de même longueur à partir du point A. On place M’ et B’ tel que AM’ = 4 et AB’ = 7.
- On trace (BB’), puis sa parallèle passant par M’. Elle coupe [AB] en M.
Le théorème de Thalés et sa réciproque - troisième : image 8


Justification :
Les droites (B’M’) et (BM) sont sécantes en A, les droites (BB’) et (MM’) sont parallèles.
Donc, d’après le théorème de Thalès : \dfrac{\text{AM}}{\text{AB}} = \dfrac{\text{AM'}}{\text{AB'}}.
Et comme \dfrac{\text{AM'}}{\text{AB'}} = \dfrac{4}{7} (par construction), alors on a : \dfrac{\text{AM}}{\text{AB}} = \dfrac{4}{7}.

2. Construction : \dfrac{\text{MA}}{\text{MB}} = \text{k}

Exercice :
Placer deux points A et B.
Tracer à la règle non graduée et au compas les points M de la droite (AB) tels que \dfrac{\text{MA}}{\text{MB}} = \dfrac{2}{5}.

Solution :
- On trace deux droites parallèles (d) et (d’) telles que (d) passe par A et (d’) passe par B.
- On choisit une ouverture de compas et on trace sur la droite (d) deux segments consécutifs de même longueur de part et d’autre du point A. Et on trace sur la droite (d’) cinq segments consécutifs de même longueur à partir du point B (on garde la même unité).
- On place G1 et G2 sur la droite (d) tels que AG1 = AG2 = 2 et H sur la droite (d’) tel que BH = 5.
- Les droites (HG1) et (HG2) coupent (AB) en M1 et M2.
Le théorème de Thalés et sa réciproque - troisième : image 9


Justification :
- Les droites (G2H) et (AB) sont sécantes en M2. Les droites (AG2) et (BH) sont parallèles.
Donc d’après le théorème de Thalès, on a : \dfrac{\text{M}_2\text{G}_2}{\text{M}_2\text{H}} = \dfrac{\text{M}_2\text{A}}{\text{M}_2\text{B}} = \dfrac{\text{AG}_2}{\text{BH}}. Or, \dfrac{\text{AG}_2}{\text{BH}} = \dfrac{2}{5}, donc \dfrac{\text{M}_2\text{A}}{\text{M}_2\text{B}} = \dfrac{2}{5}.
- Les droites (AB) et (G1H) sont sécantes en M. Les droites (AG1) et (BH) sont parallèles.
Donc d’après le théorème de Thalès, on a : \dfrac{\text{M}_1\text{A}}{\text{M}_1\text{B}} = \dfrac{\text{M}_1\text{G}_1}{\text{M}_1\text{H}} = \dfrac{\text{AG}_1}{\text{BH}}. Or, \dfrac{\text{AG}_1}{\text{BH}} = \dfrac{2}{5}, donc \dfrac{\text{M}_1\text{A}}{\text{M}_1\text{B}} = \dfrac{2}{5}.




  • Cette fiche

  • Forum de maths

    * Thalès en troisième
    Plus de 2 927 topics de mathématiques sur "Thalès" en troisième sur le forum.


cours de maths 3e - exercices de maths 3e - prof de maths - cours particuliers haut de pagehaut Retrouvez cette page sur ilemaths l'île des mathématiques
© Tom_Pascal & Océane 2014