Inscription / Connexion Nouveau Sujet
Niveau concours
Partager :

trouver un nombre

Posté par
zahratoun
27-09-09 à 15:16

Quel(s) nombre(s) se cache(nt) derrière ces informations?
Un entier naturel N est composé de trois chiffres dont le produit est 120 et la some est 16.
1)Montrer que N ne contient ni 0, ni 1, ni 2.
2)N peut il contenir le chiffre 7? le chiffre 9?
3)Determiner un nombre N solution du probleme en explicitant votre procédure. Peut-on déduire d'autres solutions? si oui lesquelles?
4)Determiner tous les nombres N solutions du probleme.

Posté par
siOk
re : trouver un nombre 27-09-09 à 15:25

Bonjour

une traduction de l'énoncé

N un tel nombre

N = 100 a + 10 b + c   avec  0 < a <= 9     0 <= b <= 9  0 <= c <= 9
on a bien a non nul  ... sinon le nombre n'a que deux chifres.


abc = 120

a + b + c = 16



à toi de jouer ...

Posté par
zahratoun
re : trouver un nombre 27-09-09 à 16:18

Merci.Mais je suis encore plus embrouillée. Pourquoi N n'aurait ue deux chiffres?!?

Posté par
siOk
re : trouver un nombre 27-09-09 à 16:47

on a bien a non nul  ... sinon le nombre n'aurait que deux chiffres.
dit autrement, on n'a pas 0 en premier chiffre du nombre.


Question 1
Que se passerait-il pour le produit des chiffres si un des chiffres valait 0 ?

Combien vaudrait au maximum le produit des chifres si un des chiffres était 1 ?

Si un des chiffres était 2, combien vaudrait le produit des deux autres ? Est-ce possible ?

Posté par
zahratoun
re : trouver un nombre 27-09-09 à 17:01

Si un des chffres est 0 alors le produit serait nul.
Le produit des chifres serait 81 car 9*9*1=81 mais est ce que j'ai le droir de l'expiquer comme cela?
Troisieme question: je seche.

Posté par
siOk
re : trouver un nombre 27-09-09 à 17:26

b) si un chiffre était 1
le produit des trois chiffres serait au plusde 81
or il est de 120
donc le chiffre 1 n'est pas possible.



c) si un chiffre était 2
le produit des deux autre serait 60
or 60 se décompose en:

60 * 1 = 30 * 2 = 20 * 3 = 15 * 4 = 12 * 5 = 10 * 6

il n'y a pas de possibilité pour avoir nos deux chiffres entre 0 et 9

Posté par
zahratoun
re : trouver un nombre 27-09-09 à 17:56

je ne comprends vraiment pas. je suis désolé mais pourriz vou me réexpliquer?

Posté par
siOk
re : trouver un nombre 27-09-09 à 18:45

On est d'accord que les chiffres sont "l'alphabet" des nombres. Il n'y a que 10 chiffres:
0 1 2 3 4 5 6 7 8 9



Notations utilisées
* pour le signe multiplié
? pour le premier chiffre manquant
?? pour le second chiffre manquant



Le nombre ne contient pas 0
Si un chiffre était 0
   par exemple dans  104  350  990   909 ...  (remarque que le 0 ne peut pas être en première position)
   le produit serait  0 * ? * ?? = 0
c'est impossible puisque l'on sait que le produit est 120
donc le nombre ne contient pas le chiffre 0


Le nombre ne contient pas 1
Si un chiffre était 1
   par exemple dans  104  351  919   111 ...

   le produit serait  1 * ? * ??
   les chiffres manquant sont au plus 9, le produit est au plus  1 * 9 * 9 = 81
   bien entendu, le produit peut être autre chose mais jamais plus de 81

c'est impossible puisque l'on sait que le produit est 120
donc le nombre ne contient pas le chiffre 1



Le nombre ne contient pas 2
Si un chiffre était 2
   par exemple dans  204  321  912   222 ...
  
   le produit serait  2 * ? * ??
   comme le produit est 120 (c'est à dire 2 * 60)
   on aurait  ? * ?? = 60
  
   les seules décomposition 60 en deux multiplications de nombres entiers sont
   60 * 1 = 30 * 2 = 20 * 3 = 15 * 4 = 12 * 5 = 10 * 6

c'est impossible car 60  30   20   15   12   10  ne sont pas des chiffres.
donc le nombre ne contient pas le chiffre 2



Le nombre ne contient pas 7
Si un chiffre était 7
   par exemple dans  704  371  917   777 ...
  
   On aurait:    7 * ? * ?? = 120
   c'est à dire:  7 * entier = 120

c'est impossible car la division de 120 par 7 n'est pas un entier
donc le nombre ne contient pas le chiffre 7



Le nombre ne contient pas 9
Même idée que pour 7



Question 3
Au point où nous en sommes, les SEULES possibilités pour les chiffres sont
3 4 5 6 8

Essayons 4
Le produit des chiffres s'écrit:  4 * ? * ??
et comme 120 c'est 4 * 30
on aura= 120

donc ? * ?? = 30

2)N peut il contenir le chiffre 7? le chiffre 9?
3)Determiner un nombre N solution du probleme en explicitant votre procédure. Peut-on déduire d'autres solutions? si oui lesquelles?
4)Determiner tous les nombres N solutions du probleme.

Posté par
siOk
re : trouver un nombre 27-09-09 à 18:46

erreur de touche en tapant le message.
Ne pas tenir compte dans le message ci-dessus de Essayons 4 que je vais re-rédiger en entier.

Posté par
siOk
re : trouver un nombre 27-09-09 à 18:58

Essayons 4
Le produit des chiffres s'écrit:  4 * ? * ??
et comme 120 c'est 4 * 30
on aura  ? * ?? = 30

Les seules décompositions de 30 en produit d'entiers sont:
30 * 1 = 15 * 2 = 3 * 10 = 6 * 5

Comme 30   15   10   ne sont pas des chiffres
la seule possibilité éventuelle reste:   6 * 5

C'est impossible car la somme des chiffre serait de:  4 + 5 + 6  soit  15  et non pas 16 comme indiqué
Le nombre ne contient pas le chiffre 4




Essayons 3
Le produit des chiffres s'écrit:  3 * ? * ??
et comme 120 c'est 3 * 40
on aura  ? * ?? = 40

Les seules décompositions de 40 en produit d'entiers sont:
40 * 1 = 20 * 2 = 10 * 4 = 8 * 5

Comme 40   20   10   ne sont pas des chiffres
la seule possibilité éventuelle reste:   8 * 5

La somme des chiffre serait de:  3 + 5 + 8  qui est bien égale à 16


Les chiffres peuvent être  3 + 5 + 8
ce qui donnent 6 nombres possibles:
853  835
583  538
385  358



suite ...
il te reste à essayer les chiffres 5  6   8
pour 5 et 8 tu vas retrouver les 6 nombres précédents mais peut-être d'autres en plus ...

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !