Exercice sur les diviseurs et PGCD
Fiche relue en 2016.
LES DIVISEURS EN LISTE
Le tableau suivant indique tous les diviseurs des nombres 259, 910 et 1110.
n |
Diviseurs de n |
78 | | | | | | | | | | | | | | | | |
259 | 1 | 7 | 37 | 259 | | | | | | | | | | | | |
910 | 1 | 2 | 5 | 7 | 10 | 13 | 14 | 26 | 35 | 65 | 70 | 91 | 130 | 182 | 455 | 910 |
1110 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 | 37 | 74 | 111 | 185 | 220 | 370 | 550 | 1110 |
1. 13 est-il un diviseur de 78 ? Justifiez votre réponse.
2. Complétez la ligne des diviseurs de 78. Vous expliquerez votre méthode.
3. Déterminez le PGCD de 259 et 1110.
4. Parmi 78, 259, 910 et 1110, citez deux nombres premiers entre eux. Justifiez votre réponse.
Le tableau suivant indique tous les diviseurs des nombres 259, 910 et 1110.
n |
Diviseurs de n |
78 | 1 | 2 | 3 | 6 | 13 | 26 | 39 | 78 | | | | | | | | |
259 | 1 | 7 | 37 | 259 | | | | | | | | | | | | |
910 | 1 | 2 | 5 | 7 | 10 | 13 | 14 | 26 | 35 | 65 | 70 | 91 | 130 | 182 | 455 | 910 |
1110 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 | 37 | 74 | 111 | 185 | 220 | 370 | 550 | 1110 |
1. Donc 13 est un diviseur de 78
2. On décompose 78 comme produit de deux entiers en commençant par 1.
On s'arrêtera à 9 car 9
2 = 81 > 78 ET 8
2 = 64 < 78.
On a :
78 = 1
78
78 = 2
39
78 = 3
26
78 = 5
_
78 = 6
13
78 = 7
_
78 = 8
_
On voit apparaitre ainsi tous les diviseurs de 78 rangés par ordre croissant en descendant la 1er colonne de 1 à 8 puis en remontant la 2
ème colonne de 13 à 78.
3. PGCD(259 ; 1110) = 37. C'est par ailleurs le seul diviseur commun autre que 1 de ces deux nombres.
4. 78 et 259 n'ont pas de diviseur commun autre que 1. Ils sont donc premiers entre eux.