Fiche de mathématiques
> >

Bac Technologique - Sciences et Technologies de la Gestion
Communication et Gestion des Ressources Humaines
Session 2008

Partager :
Durée de l'épreuve : 2 heures         Coefficient : 2

L'usage de la calculatrice est autorisé pour cette épreuve.
On utilisera une feuille de papier millimétré.
Le candidat doit traiter les trois exercices.
Le candidat est invité à faire figurer toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.
Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
6 points

exercice 1

Les parties A et B sont indépendantes.

Partie A

Un établissement bancaire propose ce placement :
Si vous déposez un capital de 10 000 euros, vous obtenez un capital de 15 000 euros au bout de 10 ans.

1. Quel est le taux global de ce placement pour ces 10 ans ?

2. Sachant que ce placement est à intérêts composés, calculer le taux annuel moyen, en pourcentage, à 0,1 % près.

3. Finalement, on place le capital de 10 000 euros à 5 % d'intérêt annuel à intérets composés. Quel capital obtiendra t-on au bout de 10 ans ?

Partie B

Dans cette partie, toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.
Un article coûtait 250 euros au ler janvier 2004.
Il a subi une inflation de 4,6 % en 2004 et 3,8 % en 2005.

1. Calculer son prix au 1er janvier 2005 et au 1er janvier 2006.

2. Le tableau ci-dessous donne les indices des prix pour la période 2004/2007. On prend la référence 100 au 1er janvier 2004.
Les résultats seront arrondis à 0,1 près.

Date 1/1/2004 1/1/2005 1/1/2006 1/1/2007
Indice 100 104,6   105,9


   a) Déterminer l'indice des prix au 1er janvier 2006.
   b) Déterminer le taux d'inflation (hausse des prix), en pourcentage, pour la période du 1/1/2004 au 1/1/2006.
   c) Qu'en est-il pour la période du 1/1/2006 au 1/1/2007 ? Expliquer. 8 points

exercice 2

Partie A

Une entreprise a reçu une nouvelle machine dont la complexité nécessite un apprentissage progressif. Ainsi, la production évolue en fonction du temps. L'étude se fait sur les cinq premiers mois.
On note x le nombre de mois écoulés depuis l'installation de l'appareil.
La fonction donne le nombre de pièces, en milliers, fabriquées mensuellement par cette machine. Cette fonction est définie par :
f(x) = \frac{100x}{x+1} pour x variant dans [0 ; 5].

1. Montrer que la fonction dérivée f' de f sur [0 ; 5] peut s'écrire sous la forme : f'(x) = \frac{100}{(x + 1)^2}.

2. Déterminer le signe de f'(x) sur [0 ; 5] et en déduire le tableau de variations de la fonction f.

3. Compléter le tableau de valeurs suivant. On arrondira les résultats à l'unité.

x 0 1 2 3 4 5
f(x)       75    


4. Représenter graphiquement la fonction f sur du papier millimétré. On prendra pour unités : 2 cm par mois sur l'axe des abscisses et 1 cm pour 10 000 pièces sur l'axe des ordonnées.

5. On estime que la machine est rentable si elle produit au moins 80 000 pièces par mois. Déterminer graphiquement sur quelle période la machine est rentable.

Partie B

Pour contrôler la qualité de production, on prélève 250 pièces issues de cette machine.
On s'aperçoit que parmi elles 25 pièces ont une masse inadéquate :
      10 sont trop lourdes
      15 sont trop légères.
On admet que cet échantillon est représentatif de l'ensemble de la production.
On prélève une pièce au hasard dans la production de journée.

1. Quelle est la probabilité que la pièce prélevée ait une masse inadéquate ?

2. Sachant que la pièce prélevée a une masse inadéquate, quelle est la probabilité qu'elle soit trop lourde ? 6 points

exercice 3

Cet exercice est un questionnaire à choix multiples (QCM).
Dans cet exercice, pour chaque question, trois réponses sont proposées, une seule réponse est correcte. Auoune justification n'est demandée.
Pour chaque question, indiquer le numéro de la question et la réponse choisie.
Chaque bonne réponse rapporte 1 point, une réponse incorrecte ou une question sans réponse n'apporte ni ne retire aucun point.

Sébastien PIGNOL est jeune chef d'entreprise qui a créé son entreprise en 2002. Il désire mettre sur une feuille de tableur les résultats de sa petite société afin de pouvoir les modéliser. Pour cela, il va faire appel à ses souvenirs d'élève et d'étudiant et va devoir remplir la feuille proposée en annexe.
Le tableau ci-dessous donne le chiffre d'exploitation, en milliers d'euros, de son entreprise en fonction de l'année. Il reprend les lignes 3 et 5 de la feuille de calcul proposée en annexe.

Année 2002 2003 2004 2005 2006 2007
Chiffre d'affaires 1250 1400 1480 1600 1720 1800


1. Il compte dans un premier temps créer une nouvelle variable appelée ancienneté correspondant à la durée de vie de son entreprise : 2002 est la 1re année et ainsi de suite. Quelle formule doit-il saisir en D4 et recopier sur la ligne 4 pour obtenir l'ancienneté de son entreprise ?
a) =D3-2001 b) =$D$3-2001 c) =D3+2001


2. Il désire calculer la droite de régression y = ax + b donnant le chiffre d'affaires (y) en fonction de l'ancienneté (x). Avec un arrondi des coefficients à l'unité, quelle est l'équation correcte ?
a) y = 109x + 1159 b) y = 1268x + 1159 c) y = 109x + 1250


3. Sébastien PIGNOL place alors les coefficients obtenus a et b de la droite de régression respectivement en C2 et F2. Il désire calculer le chiffre d'affaires estimé à l'aide de la droite de régression obtenue à la deuxième question. Quelle formule doit-il saisir en C6 et recopier sur la ligne 6 ?
a) =C2*C4-F2 b) =$C$2*C4+$F$2 c) =$C$2*$C$4+$F$2


4. La ligne 6 appelée modèle 1 correspond à la droite de régression linéaire. Pour obtenir la valeur du chiffre d'affaires modélisé en 2010 sur quelle plage doit-il recopier la formule saisie en C6 ?
a) D6 : K6 b) C6 : K6 c) I6 : K6


5. Sébastien PIGNOL se rend compte que la modélisation avec la droite de régression ne lui permet pas d'obtenir le chiffre d'affaires 2500 milliers d'euros souhaité pour 2010. Il décide alors d'appliquer, à partir de 2007, un deuxième modèle, dans la ligne 7, donné par une suite arithmétique de raison 250 et de premier terme 1800, correspondant au chiffre d'affaires de 2007. Quel chiffre d'affaires obtiendra t-il avec ce modèle en 2010 ?
a) 2300 milliers d'euros b) 2550 milliers d'euros c) 2800 milliers d'euros


6. Il saisit en I7 la formule " =H7+250 " et la recopie sur J7 : K7 pour obtenir le chiffre d'affaires en 2010. En se plaçant dans la cellule K7, quelle formule a t-il ?
a) =J7+250 b) =K7+250 c) =I7+250


Annexe
  A B C D E F G H I J K L
1 Modélisation du chiffre d'affaires de l'entreprise Sébastien PIGNOL
2   a=     b=              
3   Année 2002 2003 2004 2005 2006 2007 2008 2009 2010  
4   Ancienneté 1 2                
5   Chiffre
d'affaires
1250 1400 1480 1600 1720 1800        
6   Modèle 1 1268                  
7   Modèle 2           1800        




exercice 1

Partie A

1. Le taux d'évolution T d'une grandeur qui passe d'une valeur x_1 à une valeur x_2 est donné par T = \frac{x_2 - x_1}{x_1} donc :
T = \frac{15 000 - 10 000}{10 000} = \frac{5 000}{10 000} = 0,5
Donc le taux global est de 50 %.

2. Soit t le taux annuel et k le coefficient multiplicateur correspondant, on a : k=1+t.
Le coefficient multiplicateur global est de K=1+T = 1+0,5 = 1,5.
On a donc l'équation :
(1+t)^{10} = 1,5 \\ \Longleftrightarrow \, 1+t = 1,5^{\frac{1}{10}} \\ \Longleftrightarrow \, t = 1,5^{\frac{1}{10}} - 1\\ \Longleftrightarrow \, \boxed{t \approx 0,0414 \approx 4,1 \%}

3. Au bout de 10 ans, on aura :
\boxed{C = 10 000 \times 1,05^{10} \approx 16289 \, \rm{euros}}

Partie B

1. Le coefficient multiplicateur pour une augmentation de 4,6 % est 1 + 0,046 = 1,046 :
C1 = 250 × 1,046 = 261,5
Donc l'article coûte 261,5 € au 1er janvier 2005.
Le coefficient multiplicateur pour une augmentation de 3,8 % est 1 + 0,038 = 1,038 :
C2 = 261,5 × 1,038 = 271,437
Donc l'article coûte environ 271,4 € au 1er janvier 2006.

2. a) L'indice des prix au 1er janvier 2006 est donné par le prix de l'article au 1er janvier 2006 divisé par le prix au 1er janvier 2004 :
I = \frac{271,4}{250} = 1,0856
Donc l'indice des prix au 1er janvier 2006 est de 108,6.

2. b) Le taux d'inflation entre le 1er janvier 2004 et le 1er janvier 2006 est égal à : 108,6 - 100 = \boxed{8,6 \%}.

2. c) On calcule le taux d'évolution entre l'indice des prix du 1er janvier 2006 au 1er janvier 2007 :
t = \frac{105,9 - 108,6}{108,6} \approx -0,0249
Ce qui correspond à une baisse d'environ 2,5 %.

exercice 2

Partie A

1. On utilise la formule de dérivation d'un quotient :
On pose u(x) = 100x et v(x) = x + 1 ;
donc : u'(x)=100 et v'(x)=1 .
On a : f=\frac{u}{v} donc :
f'=\frac{u'v-uv'}{v^2}\\ f'(x)=\frac{100(x+1)-100x}{(x+1)^2}\\ f'(x)=\frac{100x+100-100x}{(x+1)^2}\\ \boxed{f'(x)=\frac{100}{(x+1)^2}}

2. Le dénominateur s'annule pour x=-1 donc ne s'annule pas sur l'intervalle [0 ; 5].
On obtient donc le tableau de signe de la dérivée sur [0 ; 5].
bac STG Communication et Gestion des Ressources Humaines Métropole 2008 - terminale : image 1

On en déduit que la fonction f est strictement croissante sur [0 ; 5], d'où le tableau de variations :
bac STG Communication et Gestion des Ressources Humaines Métropole 2008 - terminale : image 2

Avec :
f(0) = \frac{100 \times 0}{0 + 1} = \frac{0}{1} = 0 \\ f(5) = \frac{100 \times 5}{5 + 1} = \frac{500}{6} \approx 83,3

3. Tableau de valeurs
x 0 1 2 3 4 5
f(x) 0 50 67 75 80 83


4. Représentation graphique
bac STG Communication et Gestion des Ressources Humaines Métropole 2008 - terminale : image 3


5. On trace une droite horizontale d'équation y=80, et on détermine l'abscisse du point d'intersection de cette droite avec la courbe ; on trouve x=4.
Donc la machine est rentable à partir de 4 mois.

Partie B

1. Parmi les 250 pièces, il y en a 25 qui ont une masse inadéquate, donc :
\boxed{p_1 = \frac{25}{250} = 0,1}

2. Parmi les 25 pièces qui ont une masse inadéquate, il y en a 10 qui sont trop lourde, donc :
\boxed{p_2 = \frac{10}{25} = 0,4}

exercice 3

1. Réponse a : =D3-2001
L'ancienneté est égale à l'année à laquelle on retire 2001. On ne doit pas bloquer la référence à la cellule D3 à l'aide de $ car on veut que l'année varie avec la recopie vers la droite.

2. Réponse a : y = 109x+1159
L'utilisation d'une calculatrice donne l'équation : y=109,4 x + 1158,7

3. Réponse b : =$C$2*C4+$F$2
Il faut bloquer dans la formule les réferences aux cellules qui contiennent les valeurs de a et de b, mais pas celle de la cellule qui contient la variable x.

4. Réponse a, b ou c
Le chiffre d'affaire en 2010 se situe dans la cellule K6 ; or chaque plage proposée contient la cellule K6 et fournira donc le résultat demandé.

5. Réponse b : 2550 milliers d'euros
Pour aller de 2007 à 2010, il faut ajouter 3 fois la raison de 250, soit 750 à additionner à 1800.

6. Réponse a : =J7+250
Le chiffre d'affaire en 2010 (K7) est égal au chiffre d'affaire en 2009 (J7) auquel on ajoute 250.
Publié le
ceci n'est qu'un extrait
Pour visualiser la totalité des cours vous devez vous inscrire / connecter (GRATUIT)
Inscription Gratuite se connecter
Merci à
jamo Moderateur
pour avoir contribué à l'élaboration de cette fiche


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1291 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !